Discovering Donor Characteristics from Bloodstains with Infrared Spectroscopy

Discovering Donor Characteristics from Bloodstains with Infrared Spectroscopy

From interpreting the incident to pinpointing the perpetrator, the presence of blood at a crime scene can provide clues vital to solving a crime.  Since the advent of DNA profiling in the 1980s, police have been able to use DNA to link suspects to crime scenes, making the detection and collection of biological evidence more important than ever before. However successful DNA profiling relies on a positive match with either a DNA profile from a suspect or one stored in a database. With nothing to compare a profile to, the DNA is of limited use and the trail may quickly run cold.

But what if investigators could gain even more information from a bloodstain at a crime scene? What if it were possible to rapidly figure out whether the donor was male or female, or establish their race? And all of this without shipping samples back to the lab.

New research conducted at the University at Albany in New York has demonstrated that it may be possible to establish some individual donor characteristics in a matter of minutes.

Past research has already demonstrated that the biochemical composition of blood differs between males and females and individuals of different races. But the ability to obtain this information on-site at the crime scene in a matter of minutes could change the way body fluids are processed. In a recent study, Prof. Igor Lednev and his team applied a technique known as attenuated total reflection Fourier transform-infrared (ATR FTIR) spectroscopy to blood analysis, with the aim of establishing whether characteristics such as sex and race can be determined from bloodstains.

FTIR is an analytical technique capable of providing information about a material’s chemical information. In brief, the device directs infrared radiation towards the sample. Some of this radiation is absorbed by the material, and some passes through. The sample’s absorbance of this light at different wavelengths is measured and used to determine the material’s chemical information. After analysis a spectrum is produced, which acts as a kind of molecular ‘fingerprint’ of the sample. The different features in the spectrum relate to the different chemical components in the sample.

Infrared spectra were produced by analysing the blood of 30 donors (a mixture of male and females of Caucasian, African American and Hispanic racial origin). From this, researchers could observe any differences occurring between blood from male and females, and blood from members of different races. Using this data, the researchers built a model capable of classifying samples based on their chemical profile. By taking the chemical profile of an unknown bloodstain and comparing it with a model containing bloodstains from numerous different groups, the model can predict the likely classification (i.e. whether the donor was male or female and which racial group they belong to). In this study, it correctly classified bloodstains around 90% of the time.

Using infrared-based techniques has a number of advantages over other methods of analysis. As the technique simply necessitates the direction of light towards the bloodstain, the technique is non-destructive. Inevitably this is perfect for criminal investigations – destroying the evidence is never ideal. IR spectroscopy is also amenable to portability, lending itself well to on-the-go analysis at crime scenes and so potentially saving a lot of time by avoiding sending unnecessary samples back to the lab for analysis.

Although only a pilot study, this research has demonstrated the possibility of establishing donor characteristics through the rapid and non-destructive analysis of bloodstains. The ability to determine features such as sex and race would enable police to significantly narrow down the search for suspects or victims, ultimately preserving valuable time and money. Furthermore, the ability of FTIR to non-destructively analyse evidence on-site renders it an ideal tool for forensic analysis. Inevitably a great deal more research will be necessary, and if the technique ever becomes operational, it would be years before such technology and methods were suitable for deployment to crime scenes and use as evidence in criminal trials.

 

Mistek et al. Phenotype profiling for forensic purposes: nondestructive potentially on scene attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy of bloodstains. Forensic Chemistry. 2019, In Press.

 

Facing the Facts on DNA Phenotyping

Facing the Facts on DNA Phenotyping

Last week a somewhat fascinating article was published by the New York Times discussing forensic DNA phenotyping, a new(ish) technique that allows for (as popular media would say) a person’s face to be reconstructed from only their DNA. It sounds almost science fiction-esque doesn’t it?

Media interest in the topic appears to have been resurrected over the last couple of months by the use of DNA phenotyping by law enforcement officers in Colombia, South Carolina, investigating the unsolved 2011 murder of Candra Alston and her daughter Malaysia Boykin. Investigators hired the services of an independent company to carry out DNA phenotyping on DNA recovered from the crime scene years before, resulting in the production of the apparent face of the suspect.

This is not novel, ground-breaking work. In fact the whole concept of this technique has been floating around for a few years now (though this was presumably the first case in which a face reconstructed solely from DNA was presented to the general public).

 pheno1

But just what actually is DNA phenotyping? As you may or may not recall, a phenotype is a physical characteristics which is the result of genetics, for instance the colour of one’s hair, eyes or skin. DNA phenotyping essentially attempts to determine physical traits such as these using only genetic material. This is based on the idea that certain genes are contributors to particular characteristics. Theoretically, this could be such a powerful tool for investigators, forensic, historical and medical investigators alike. Imagine a piece of software which is simply fed a DNA profile and spits out the face of your perpetrator (viewing it in a very black box manner of course). A face which could then be compared to existing mugshots of criminals or circulated to trigger recognition. Or the reconstructed face of a member of some ancient civilization. The possible applications are exciting and plentiful.

But it is of little surprise that, since the publication of this work over the last few years, numerous accounts emerged in the media blowing the results way out of proportion. If one were to Google DNA phenotyping, it is easy to believe it is a well-established technique often used in legal investigations around the world. In reality, this is a technique that is not permitted in court and in fact some countries have outright banned the use of DNA phenotyping (perhaps more for ethical purposes than concerns over accuracy). A research team at Penn State University in the US, led by Peter Claes and Mark Shriver, has been conducting research into this field of work. Despite the promising results published by the group, it has been made clear that the work so far provides an “analytical framework” but considerable further research is needed. Before any claims are made that scientists can reliably re-create a face from DNA, one must pay attention to the current lack of knowledge, inaccuracies and issues linked with DNA phenotyping, unfortunately often ignored by the media.

There are obviously clear ethical concerns associated with such techniques. Unsurprisingly, concerns over the possibility of racial profiling occurring have been raised. The images produced by DNA phenotyping methods have been referred to as being “generic” and could easily draw investigators down the wrong path as they focus solely on a particular physical characteristic suggested by this method. But on the other hand, could an eyewitness account, which are often famed for being ripe with inaccuracies, not also lead to such problems, should the eyewitness state the race of the person they saw?

Ethics aside, the accuracy of the technique is no doubt at the forefront of most people’s mind. Undoubtedly the face that is reconstructed can only ever be a kind of estimation based on the information available, being unable to take into account a whole array of factors that go beyond DNA. Dyed hair, hairstyle, facial piercings, tattoos, accessories, scars, even down to a person’s characteristic facial expressions which can wildly change the appearance of a face. Many genes are known to contribute to the development of a person’s face and the appearance of certain characteristics, and these genes can be targeted in this kind of work. But it does not take an expert in genetics to conclude that there are equally many genes that may contribute to appearance that we do not know about. So how accurate can this technique really be (at this point in time anyway)?  And regardless of the actual accuracies (or inaccuracies, if you wish) of this technique, somewhat equally as important is how people actually perceive it. Anyone with the slightest interest in forensic science is no doubt aware of the so-called “CSI effect”, which has raised concerns over how lay people perceive scientific (or sometimes even unscientific) techniques. Is it plausible that, should DNA phenotyping be accepted into a courtroom, members of the jury will see “DNA” and assume it must be just as trustworthy as established DNA profiling techniques?

Despite the possible benefits of this technique, there is ultimately currently no way only the DNA of an individual can be used to reconstruct their face.

Thus this is a technique still under research, not yet developed enough to actually be used in legal investigations. And yet, in the United States at least, various independent companies are offering DNA phenotyping services. The law enforcement agency referred to at the beginning of this post in fact used one of these services. The results of these companies list a range of biological and physical attributes, including sex, skin colour, eye colour, hair colour, probable ancestry, and even if the suspect is likely to have freckles! It has even been suggested that genetic analysis could be a predictor of a person’s age. There is an array of factors that can affect a person’s appearance that do not necessarily have anything to do with their genetics, and a person’s DNA can in no way account for this.

These facts by no means aim to take anything away from the technique. DNA phenotyping undoubtedly can unlock entirely new routes of investigation for law enforcement officers, and it has been successfully used in a number of cases. Even if its use would not currently be accepted as evidence in court, it may still provide law enforcement with new investigative leads if other lines of inquiry have been exhausted.

Although the concept of DNA phenotyping emerged years ago and made slow progress, in the last couple of years research and interest appear to have boomed. It is a fascinating topic with huge potential, but it is ripe with practical and ethical concerns that will no doubt bring about some very intriguing debates. I am sure we will be hearing much more about this in the coming years.

References

Claes, P. Shriver, M D. Establishing a multidisciplinary context for modelling 3D facial shape from DNA. PLos Genet. 10 (2014).

Claes, P. Hill, H. Shriver, M D. Toward DNA-based facial composites: preliminary results and validation. Forensic Sci Int Gen. 13 (2014), pp. 208-216.

New Scientist. Genetic mugshot recreates faces from nothing but DNA. [online][Accessed 02 Mar 2015] Available: http://www.newscientist.com/article/mg22129613.600-genetic-mugshot-recreates-faces-from-nothing-but-dna.html#.VPSBpvmsV8E

The New York Times. Building a Face, and a Case, on DNA. [online][Accessed 02 Mar 2015] Available: http://www.nytimes.com/2015/02/24/science/building-face-and-a-case-on-dna.html?ref=science