Speeding Up Sexual Assault Investigations with Chemistry

Speeding Up Sexual Assault Investigations with Chemistry

A recent study has demonstrated a new technique for the rapid detection of semen and the chemical differentiation of condoms, offering a new potential tool to assist sexual assault investigations.

Hundreds of thousands of cases of sexual assault and rape are reported each year, though this is undoubtedly a fraction of the actual number. The successful identification and prosecution of offenders in sexual assault cases often hinges on the ability to detect and collect biological fluids such as semen, essential for supporting victim statements and identifying the offender. In the past, the identification of semen has relied on destructive, non-specific presumptive tests, often based on a colour change reaction in the presence of a specific chemical in semen. In recent years, there has been a push for the development of preparation-free analytical techniques that could be used for the analysis of sexual assault evidence at crime scenes or in hospitals.

In a recent study published in Forensic Chemistry, a method using ambient ionisation mass spectrometry has been developed for the analysis of sexual assault evidence, specifically semen and condoms. Ambient ionisation MS refers to a type of mass spectrometry which allows the rapid, direct analysis of a material, eliminating the need for the time-consuming and destructive sample preparation steps that limit traditional techniques.

This particular technique, called sheath-flow probe electrospray ionisation MS, uses a small, cheap-to-construct probe that is simply touched to the surface of the sample. The probe is then placed in front of a mass spectrometer inlet and a voltage applied to produce an instant unique chemical profile. In all, a sample can be analysed in a matter of seconds.

In this study, semen was successfully detected on various materials, such as fabric and condoms, mimicking the kind of environments the body fluid could be encountered during a sexual assault investigation and, crucially, showing the ability of the technique to work with different surfaces. Whereas presumptive tests for semen are focused on the presence of one chemical, making them prone to “false positives”, this new technique harnesses a suite of chemicals, allowing a more confident identification of semen. It was also shown that semen could still be detected after 40 days of ageing. This is important as during a criminal investigation it may be days, weeks or even longer before evidence is seized and analysed. After 40 days, the chemical profile was remarkably unchanged, indicating that even older semen could potentially be identified.

The study then took this technique one step further, applying it to the analysis of condoms. As criminals become more knowledgeable about forensic evidence such as DNA, there has been an increase in the use of condoms by criminals to protect their identity. By analysing the surface of different brands and types of condom, it was demonstrated that unique chemical profiles were associated with the different condoms, with notable chemicals relating to the condom’s material or flavouring being detected. This has two major implications. Firstly, the ability to detect lubricants and traces from condoms could prove beneficial in confirming condom use, particularly important when biological evidence is lacking. Furthermore, the unique chemical profiles could even open up the possibility of indicating what type of condom was used by the offender, offering more information to the investigation.

Direct analysis techniques such as this have great potential to speed up forensic investigations, but it will no doubt be years before such technology is considered for adoption by police forces.

 

Rankin-Turner et al. Using mass spectrometry to transform the assessment of sexual assault evidence. Forensic Chemistry, 2020, DOI: 10.1016/j.forc.2020.100262

If you don’t have a subscription to Forensic Chemistry, see the 50-day free access link or get in touch with the authors.

Maggot Analysis with Mass Spectrometry

Maggot Analysis with Mass Spectrometry

A new proof-of-concept study by researchers at the University at Albany in New York has developed a mass spectrometry-based technique for the rapid species prediction of blow fly larvae for use in forensic investigations.

Entomological evidence (evidence relating to insects) has proven invaluable to forensic investigations for decades, particularly in the estimation of time since death. Insects which feed on decomposing remains, known as necrophagous insects, will colonise a body in a reasonably predictable pattern, with different insects arriving at different stages throughout the decomposition process. Different species of flies, beetles and mites are commonly encountered. Blow flies in particular will often arrive at the scene within minutes of death to lay eggs on the body. As these eggs hatch, larvae (or maggots) emerge to feed on the decomposing remains. By studying the type and age of insects present at a scene, it may be possible to estimate the time since death, or postmortem interval.

The ability to achieve this hinges on the correct identification of insect species, which is unfortunately not always straightforward. The larvae of different species of blow fly are visually very similar, thus difficult to distinguish by eye. For this reason, maggots are often reared to maturity for species identification, with adult blow flies exhibiting more distinguishing physical differences. Inevitably the rearing of maggots to adulthood is a time-consuming process that requires the expertise of a forensic entomologist.

In recent years, researchers have tried to develop more rapid approaches to insect species identification, particularly using chemical analysis. Researchers at the University at Albany in New York have been applying direct analysis in real time mass spectrometry (DART-MS) to the analysis of insect evidence to provide a rapid species identification tool. In DART-MS, the sample is placed between the DART ion source and the inlet of the mass spectrometer, allowing chemical components in the sample to be ionised and drawn into the MS for direct analysis. DART-MS requires minimal or no sample preparation and results can be obtained almost instantly. Using this technique, Rabi Musah and her team have already demonstrated the ability to determine the species of larvae, pupae and adult flies, highlighting a promising new tool in rapid species identification in forensic entomology.

However, until now this research has focused on the analysis of individual species. In a real-world scenario, maggots present on the body may consist of multiple different species, therefore any techniques developed for rapid species identification of larvae must be able to work with mixed samples. In a recent study, the team have taken the method one step further by examining the potential to identify larvae from mixed species.

Blow flies of various species were collected from Manhattan, New York. Maggots were submerged in 70% ethanol and the solution exposed to the ion source of the DART-MS to produce chemical signatures of both individual species and combinations of species. Mixtures of two, three, four, fix and six different species were analysed. Using the chemical profiles produced, a predictive model was constructed for the subsequent identification of unknown insect samples. Using this model, maggot species could be established with an accuracy of up to 94% and a confidence interval of 80-95%. Individual insect species are readily differentiated, with different species producing distinct chemical profiles. Similarly, mixtures of two different species could also be differentiated. As might be expected, samples containing a higher number of species were more difficult to differentiate.

Although only a proof-of-concept study and further validation is required, the study demonstrates that DART-MS could offer a way of rapidly determining the species of blowfly larvae, thus allowing investigators to establish which insects are present at the scene of a death and work out postmortem interval faster.

 

Beyramysoltan, S. Ventura, M. I. Rosati, J. Y. Giffen, J. E. Musah, R. A. Identification of the Species Constituents of Maggot Populations Feeding on Decomposing Remains—Facilitation of the Determination of Post Mortem Interval and Time Since Tissue Infestation through Application of Machine Learning and Direct Analysis in Real Time-Mass Spectrometry. Analytical Chem, 2020, In Press. 

Fingerprint Drug Testing to Detect Drug Use or Contact

Fingerprint Drug Testing to Detect Drug Use or Contact

The detection and identification of drugs to demonstrate the use of illicit substances has long since been achieved through the collection and analysis of bodily fluids such as urine or blood. However with the inconvenience and invasiveness of collecting bodily fluids from people combined with the risks associated with handling biological fluids, scientists have examined alternative matrices for the detection of drug abuse.

In recent years researchers have demonstrated the possibility of detecting drugs in a less invasive manner, using only a fingerprint. In a recent study published in the Journal of Analytical Toxicology, researchers at the University of Surrey have developed a mass spectrometry-based technique to not only detect illicit drugs in fingerprints, but also differentiate between drug use and drug contact.

Fingerprints were collected from recent drug users undergoing treatment at a drug rehabilitation centre, specifically those who had taken heroin or cocaine in the last 24 hours. Fingerprints were collected both before and after thorough handwashing, with the aim of establishing whether drugs could be detected from both the surface of the hands but also in sweat excreted by the participants. Fingerprint samples were also collected from non-drug users who had simply handled heroin to further establish the detectable differences between those who have used or handled drugs. The fingerprints collected were analysed by liquid chromatography-high resolution mass spectrometry, with a focus on both the drugs and their metabolites (for instance 6-monoacetylmorphine, a compound formed in the body following heroin use).

The experiment successfully detected heroin or its metabolites in every scenario, even if an individual had washed their hands prior to fingerprint collection. However in some instances, the process of hand-washing removed all detectable traces of the drugs, such as in the case of morphine, acetylcodeine and noscapine. Importantly, the technique was able to distinguish between those who had handled illicit drugs and those who had actually taken them, due to the presence of metabolites only formed in the body following drug use. Furthermore, the research demonstrated that it was also possible to detect heroin in the fingerprints of someone who had simply shaken hands with another person who had handled heroin. This highlights an essential factor should such techniques ever become operational in the detection of drug use, stressing the importance of handwashing prior to fingerprint collection to ensure any drugs detected are the result of drug use rather than inadvertent contact with illicit drugs.

The ability to detect drugs in fingerprint could aid legal investigations in a number of ways. Firstly, by demonstrating drug use in known individuals through the analysis of their fingerprints. And secondly, by analysing fingerprints recovered from crime scenes to indicate a person of interest has recently used or handled illicit drugs, potentially guiding police investigations. The full study was published in the Journal of Analytical Toxicology.

 

Catia Costa, Mahado Ismail, Derek Stevenson, Brian Gibson, Roger Webb, Melanie Bailey, Distinguishing between Contact and Administration of Heroin from a Single Fingerprint using High Resolution Mass Spectrometry, Journal of Analytical Toxicology. https://doi.org/10.1093/jat/bkz088

Discovering Donor Characteristics from Bloodstains with Infrared Spectroscopy

Discovering Donor Characteristics from Bloodstains with Infrared Spectroscopy

From interpreting the incident to pinpointing the perpetrator, the presence of blood at a crime scene can provide clues vital to solving a crime.  Since the advent of DNA profiling in the 1980s, police have been able to use DNA to link suspects to crime scenes, making the detection and collection of biological evidence more important than ever before. However successful DNA profiling relies on a positive match with either a DNA profile from a suspect or one stored in a database. With nothing to compare a profile to, the DNA is of limited use and the trail may quickly run cold.

But what if investigators could gain even more information from a bloodstain at a crime scene? What if it were possible to rapidly figure out whether the donor was male or female, or establish their race? And all of this without shipping samples back to the lab.

New research conducted at the University at Albany in New York has demonstrated that it may be possible to establish some individual donor characteristics in a matter of minutes.

Past research has already demonstrated that the biochemical composition of blood differs between males and females and individuals of different races. But the ability to obtain this information on-site at the crime scene in a matter of minutes could change the way body fluids are processed. In a recent study, Prof. Igor Lednev and his team applied a technique known as attenuated total reflection Fourier transform-infrared (ATR FTIR) spectroscopy to blood analysis, with the aim of establishing whether characteristics such as sex and race can be determined from bloodstains.

FTIR is an analytical technique capable of providing information about a material’s chemical information. In brief, the device directs infrared radiation towards the sample. Some of this radiation is absorbed by the material, and some passes through. The sample’s absorbance of this light at different wavelengths is measured and used to determine the material’s chemical information. After analysis a spectrum is produced, which acts as a kind of molecular ‘fingerprint’ of the sample. The different features in the spectrum relate to the different chemical components in the sample.

Infrared spectra were produced by analysing the blood of 30 donors (a mixture of male and females of Caucasian, African American and Hispanic racial origin). From this, researchers could observe any differences occurring between blood from male and females, and blood from members of different races. Using this data, the researchers built a model capable of classifying samples based on their chemical profile. By taking the chemical profile of an unknown bloodstain and comparing it with a model containing bloodstains from numerous different groups, the model can predict the likely classification (i.e. whether the donor was male or female and which racial group they belong to). In this study, it correctly classified bloodstains around 90% of the time.

Using infrared-based techniques has a number of advantages over other methods of analysis. As the technique simply necessitates the direction of light towards the bloodstain, the technique is non-destructive. Inevitably this is perfect for criminal investigations – destroying the evidence is never ideal. IR spectroscopy is also amenable to portability, lending itself well to on-the-go analysis at crime scenes and so potentially saving a lot of time by avoiding sending unnecessary samples back to the lab for analysis.

Although only a pilot study, this research has demonstrated the possibility of establishing donor characteristics through the rapid and non-destructive analysis of bloodstains. The ability to determine features such as sex and race would enable police to significantly narrow down the search for suspects or victims, ultimately preserving valuable time and money. Furthermore, the ability of FTIR to non-destructively analyse evidence on-site renders it an ideal tool for forensic analysis. Inevitably a great deal more research will be necessary, and if the technique ever becomes operational, it would be years before such technology and methods were suitable for deployment to crime scenes and use as evidence in criminal trials.

 

Mistek et al. Phenotype profiling for forensic purposes: nondestructive potentially on scene attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy of bloodstains. Forensic Chemistry. 2019, In Press.

 

The Smell of Death: Confirming Decomposition using Volatiles in the Air

Odour mortis, or the ‘smell of death’, refers to the chemicals released from the body during decomposition. Renowned forensic anthropologist Arpad Vass, who has studied the chemical changes occurring in the body after death for many years, recently shared the details of a particularly interesting scenario. The article, published in the May 2019 issue of Forensic Science International, details a fascinating case in which the occurrence of human decomposition was demonstrated based solely on chemical compounds in the air for the first time, without any human remains actually being found at the scene. The article doesn’t specify suspect or victim details, but anyone familiar with the case will recognise it instantly.

First, a brief introduction. In 2008, a woman was charged with the murder of her daughter, allegedly storing the victim’s body in the boot of her car for several days before disposing of the remains and dumping the car. Police had initially been alerted to the incident by the suspect’s parents, who had picked up their daughter’s abandoned car and noticed a foul decomposition-like odour coming from the vehicle. Coupled with the fact they had not seen their granddaughter in several weeks, the suspect’s mother promptly called 911.

The police soon took possession of the car and agreed that the scent of decomposition was emanating from the vehicle. Numerous cadaver dogs, specifically trained to detect odours from decaying bodies, alerted to the back of the car, further suggesting some kind of decomposing remains had been stored in the boot of the car. Fly pupae were also discovered. Entomological evidence is frequently associated with decomposing human remains, with flies and various other insects known to visit corpses to feed or lay eggs. Although no human remains were found in the car, several weeks later the body of the missing girl was found in a wooded area near the suspect’s home, and the case promptly turned into a murder investigation, with the victim’s mother as the prime suspect. However with minimal physical evidence linking the body to the suspect’s car, law enforcement turned to a somewhat unconventional tool to aid their investigation.

Various pieces of evidence were recovered from the vehicle, including segments of carpet, scrapings from the tyre wells, and various pieces of rubbish found in the car. Interestingly, investigators also collected some air samples from the boot of the car. Air can be sampled from remote locations using a technique that utilises air pumps to draw in gaseous analytes from the environment and capture them in a sorbent trap. This collection of trapped compounds can then be transported to a laboratory for analysis. In this case, about 35L of air was collected from the vehicle into a type of sorbent tube, then analysed using gas chromatography/mass spectrometry (GC/MS). GC/MS is a well-established analytical technique, allowing scientists to separate the individual chemicals in a mixture and identify those components. You can read more about how mass spectrometry works here.

This process allowed researchers to figure out exactly which volatile chemicals were present in the suspect’s vehicle and establish whether these are everyday compounds likely to be found in a car, or if they had some other source.

In the years leading up to this case a great deal of research had been conducted at the University of Tennessee’s Anthropological Research Facility. At this facility researchers were investigating, among other things, the odours produced during the decomposition of a human body. The odours created during this process are the result of volatile compounds produced as the body decomposes, and research has demonstrated that hundreds of individual chemical components are formed during this complex process. As part of research at the university, researchers had constructed a vast database of hundreds of chemicals detected during the process of human decomposition, including the different decomposition stages at which those chemicals appear. By comparing the chemicals detected in the vehicle with those stored in the database, it was possible to identify compounds known to be produced during the decomposition process. There was an 80% match between the compounds detected in the boot of the car and those chemicals considered to be relevant to human decomposition. Furthermore, unusually high levels of chloroform were also detected in the boot of the car.

The results from the air samples collected and chemical extracts from various other artefacts in the car led the researcher to conclude that there was a very high likelihood of a decomposition event occurring in the boot of the car. Many of the compounds detected in the vehicle could only be logically explained by the presence of decomposing remains.

Despite these findings (and various other pieces of evidence presented in court), the jury reached a verdict of not guilty for the charge of murder. Not too surprising an outcome, considering the use of air analysis to detect decomposition had not previously been used in a legal investigation. However in closing arguments, the defence stated that the victim had in fact been placed in the vehicle for transport (claiming the victim’s death had been accidental), ultimately confirming the results of the analysis.

 

Vass, A. A. Death is in the air: confirmation of decomposition without a corpse. Forensic Sci. Int. (2019). doi:10.1016/j.forsciint.2019.05.005

Vass, A. A. Odor mortis. Forensic Sci. Int. 222, 234–241 (2012).

 

Tracking Movements with Fingernails

Tracking Movements with Fingernails

When human remains are discovered, investigators will often turn to routine methods such as fingerprinting, DNA profiling and the use of dental records to identify the individual. But in the absence of database records for comparison, such traditional techniques may not prove all that useful, and forensic scientists must look for new ways to identify the unknown.

In recent years the use of stable isotope analysis has aided forensic investigations, particularly in establishing the geographic origin of unidentified human remains. Isotopes are different forms of an element. For example, oxygen has three naturally occurring stable isotopes: O16, O17 and O18.  These isotopes are incorporated into substances in the environment (such as water) in varying ratios. The relative abundance of isotopes can be influenced by various factors in a process known as isotopic fractionation. It has been found that isotopic ratios can be related to different regions of the world. For example, the tap water in one country may have a completely different isotopic signature in comparison to water in another country. How does this relate to the isotopes found in our bodies? Well, you are what you eat. As you consume food and water from a particular area, the atoms in our bodies express abundances similar to the food and water consumed.

This provides the basis for using isotope analysis to trace materials back to a certain geographic region. It has already been demonstrated that the isotopic analysis of bones, teeth and other bodily tissues can allow for individuals to be traced to particular locations, typically through the analysis of oxygen, hydrogen and sulphur isotopes. However last year, researchers at the University of Utah took a different approach, this time focusing on fingernails.

As with bones and teeth, the isotopic content of our fingernails will be affected by factors such as the food and water we consume. As fingernails are estimated to grow at a rate of 3-4mm per month, they are a prime target for studying isotopic patterns in an individual over a shorter timespan (less than six months as oppose to years). This is by no means the first study of isotope abundances in fingernails, but previous research has typically focussed on single timepoints rather than tracking the same individuals over time. As global travel becomes more commonplace, it is increasingly likely that human remains could have originated from any part of the world. Therefore, we need to understand how travel can cause changes in isotope abundances within the body.

This study aimed to establish whether fingernail isotope ratios were different in a group of local people in comparison to non-locals who had recently moved to the area (in this case Salt Lake City in the United States). Over a period of a year, fingernail clippings were collected at multiple timepoints from a group of volunteers, about half of which were local residents and the rest individuals who had recently arrived from various locations across the US and the world. The fingernail clippings were cleaned (to remove surface components and contaminants that could interfere with the analysis) and subjected to analysis by isotope ratio mass spectrometry (IRMS). IRMS is a particular type of mass spectrometry that allows us to measure the isotopic abundance of certain elements typically hydrogen, carbon, nitrogen, and oxygen. You can read more about IRMS here.

The isotope values of samples from residents were used to construct a baseline of expected values for the area, with isotope values from non-residents’ samples being compared with these. Initially, samples from non-residents showed a wide range of isotopic values, which is to be expected given they had only recently moved to the area. Some residents did fall within the expected range of locals, but these participants had moved from relatively nearby locations, which could explain the similar relative isotopic abundances. However after about 3 months, the fingernail isotopic patterns shifted until the non-residents could no longer be distinguished from the residents. This indicates that although the relative abundance of isotopes in our fingernails can shed some light on geographical movement, it can only provide information relating to the past few months. Inevitably there will always be a certain amount of error associated with such analyses, with variation from the likes of short-term travel and random dietary changes being impossible to account for.

 

Mancuso, C. J, Ehleringer, J. R. Resident and Nonresident Fingernail Isotopes Reveal Diet and Travel Patterns. Journal of Forensic Sciences. 2019, 64(1).

 

Drug Detection at Your Fingertips: Illicit Drugs in Fingerprint Sweat

Drug Detection at Your Fingertips: Illicit Drugs in Fingerprint Sweat

Researchers have developed a new tool for the rapid detection of a number of illicit drugs using only the sweat of an individual’s fingerprint.

Typically, the procedure to test for drugs in human beings necessitates the collection of blood or urine and laboratory-based analysis by gas or liquid chromatography with mass spectrometry. Unfortunately these standard methods are somewhat invasive, require potentially time-consuming laboratory-based analysis, and use complex pieces of analytical instrumentation requiring a trained operator to use. They are inevitably unsuitable for rapid, in-situ screening of potential drug users.

Researchers at the University of East Anglia and Intelligent Fingerprinting Ltd (a spin-out company from the university) have been working on a method of conducting simple, rapid drug analysis using sweat from a person’s finger. The technique has been developed to detect four classes of drugs – cannabis, cocaine, amphetamines and opiates, with cannabis being detected based on the presence of Δ9-tetrahydrocannabinol (THC), cocaine on the presence of benzoylecgonine, and opiates via the detection of morphine.

The finger of an individual is firmly pressed onto the Drug Screening Cartridge. This is then filled with a buffer solution before insertion into the reader for analysis. Capable of detecting drugs down to the picogram level, the system is a fluorescence-based lateral flow competition assay containing four drug-bovine serum albumin conjugate lines on a nitrocellulose test strip.  In short, when a sample is introduced to the test strip, fluorescently-tagged antibodies pass over the conjugate lines. As these antibodies are specific to each drug class of interest, if that drug is present they will bind to the drug. At the end of the test, a fluorescence signal is measured. If none of the four drug classes were present, a maximum fluorescence signal will be obtained. However if any drugs were present to bind with the antibodies, there will be a decrease in the fluorescence signal proportional to the drug concentration. Within about 10 minutes, the device then gives a simple pass/fail response, requiring no specialist knowledge or excessive training to operate and interpret the results.

Furthermore, the technique has also been demonstrated to be effective when applied to the deceased. Researchers worked with a number of UK-based coroners to obtain fingerprint sweat samples from 75 deceased individuals. The most common drug detected was opiates, which is a logical finding considering the number of terminally ill patients who are prescribed morphine during palliative care.

In order to compare the new technique with those typically employed in the detection of drugs in human beings, analysis of blood samples was conducted by LC-MS-MS. The results between the two methods correlated well, with the accuracy between DSC of fingerprints and LC-MS-MS of blood being 88-97%, depending on the drug. This demonstrates the effectiveness of the method and its ability to stand up to existing techniques, though there are inevitably some shortcomings. Authors of the study have stated that there are known accuracy issues with lateral flow measurement devices, thus this new technology should be used as a presumptive screening method prior to confirmation by mass spectrometry. Furthermore, the range of target drugs is clearly currently limited, though future development could no doubt enable other classes of drug to be included.

Full details of the findings can be found in the Journal of Analytical Toxicology.

 

References

Hudson, T. Stuchinskaya, S. Ramma, J. Patel, C. Sievers, S. Goetz, S. Hines, E. Menzies and D. A. Russell, J. Anal. Toxicol., 2018, 6–10.

Forensic Magazine. Fingerprint Drug Screen Test Works on the Living and Deceased. [Available online] https://www.forensicmag.com/news/2018/10/fingerprint-drug-screen-test-works-living-and-deceased

 

Forensic Failures: Philip Scott Cannon & Bullet Analysis Blunders

Forensic Failures: Philip Scott Cannon & Bullet Analysis Blunders

In December 2009, Philip Scott Cannon of Polk County, Oregon was released from prison after his conviction was found to be based on ‘junk science’. By this time, he had served over 10 years.

The story of his wrongful imprisonment began on 23rd November 1998, when Bimla Boyd noticed that the mobile home of a neighbour appeared to be on fire. Upon investigating, she discovered the bodies of three people; Jason Kinser, his girlfriend Suzan Osborn, and Celesta Graves. All three victims had been shot. Boyd promptly called the police, and a murder investigation ensued.

Boyd stated that earlier in the day she had noticed a maroon van parked nearby, a van which happened to belong to Philip Scott Cannon. Around the same time, local men Jeremy Olsen and Larry Weaver were on their way to deliver water to the victims’ trailer. Upon arrival at the trailer, Olsen and Weaver claimed that they were met by Cannon, who was said to be “acting strangely”. Cannon informed the men that they should not go into the trailer because Jason Kinser was upset and in the midst of a heated argument with an unknown Hispanic man. Olsen and Weaver subsequently left without entering the trailer. Based on this eyewitness testimony and the fact that Cannon owned the maroon van spotted nearby, he soon became the prime suspect.

Credit: Polk County Itemizer-Observer

When questioned by police, Cannon maintained his innocence and claimed Kinser had called him over to give an estimate for fixing a plumbing problem in the trailer, after which he promptly left when Kinser began arguing with another man. However the police had a very different impression of the situation, believing that Cannon was a meth user and Kinser his dealer. Further suspicion fell on Cannon when a prisoner, Steven Brobston, informed police that he had entrusted Cannon with a box containing $16,000 to be used to support Celesta Graves, Brobston’s girlfriend and one of the victims. With the circumstantial evidence mounting, investigators searched Cannon’s home, finding the lockbox but no sign of the money. They did however stumble upon a number of weapons and ammunition. This was sufficient to arrest Cannon, who was taken into custody on 3rd December and charged with three counts of aggravated murder and the illegal possession of a firearm.

During the trail, Olsen, Weaver and Boyd were all called upon to recount their experiences of seeing Cannon near the trailer on the day of the murder. Of course this evidence was purely circumstantial, so an expert witness was called upon to study the bullets collected from the crime scene and those recovered from the suspect’s home. Michael Conrady of Oregon State University’s radiation center conducted a metallurgic analysis of the bullets known as comparative bullet lead analysis. This technique involves the application of various analytical techniques, but primarily atomic emission spectroscopy, to bullet composition determination. The method aims to establish the composition of metals in the bullet, such as copper, tin, antimony and silver, and compare profiles to ascertain whether two bullets are chemically identical. Based on this analysis, Conrady testified that the bullets from the crime scene and those from Cannon’s home were chemically identical, therefore Cannon’s ammunition was used to kill the three victims. However the weapons found in Cannon’s home were not connected to the murders, nor did police establish a reasonable motive for the triple homicide. Despite these shortcomings, on 28th February 2000, Cannon was found guilty and sentenced to three life sentences with no parole.

At the time of Cannon’s trial, the use of comparative bullet lead analysis was already under scrutiny, with some believing the reliability of the technique was unfounded. In 2005, the national Academy of Science discredited the technique and deemed it ‘junk science’, and soon after the FBI abandoned the use of this method altogether. As Cannon’s conviction was so heavily reliant on the bullet analysis, in 2009 a Polk County Circuit judge vacated Cannon’s original conviction. Incidentally it was now apparent that police involved in the original trial had hired Conrady to conduct the bullet analysis because the Oregan State crime lab had refused on the basis of the technique being scientifically unreliable. In order for a re-trial to take place, the original bullets were demanded in order to conduct further analysis. Polk County prosecutors insisted that the original trial evidence had been sent to the Department of Justice when Cannon had appealed his conviction, however Assistant Attorney General Susan Gerber, who had been assigned the case, claimed she had never received this evidence. It later came to light, when Gerber was suspended from her position on assault charges, that she had had the evidence all along, locked away in a filing cabinet.

In light of all of this, Cannon’s conviction was dismissed and he was released from prison. By this point he had spent over a decade behind bars. No other arrests have been made in relation to the murder of Kinser, Osborn and Graves.

 

References

Michigan State University National Registry of Exonerations. Philip Scott Cannon. [Available online] https://www.law.umich.edu/special/exoneration/Pages/casedetail.aspx?caseid=3083

Photo Credit: Polk County Itemizer Observer. Cannon retrial up to Polk DA. [Available online] http://www.polkio.com/news/2011/oct/25/cannon-retrial-up-to-polk-da

 

Scientist Special: Galton, Herschel & Faulds – The Competing Pioneers of Fingerprinting

Scientist Special: Galton, Herschel & Faulds – The Competing Pioneers of Fingerprinting

The use of fingerprints as a means of identification has been successfully implemented worldwide. But how did the idea of using these unique impressions in a forensic setting first come about? Many scientists are known to have been involved in the early research relating to fingerprinting, dating right back to the 1600s, but Sir Francis Galton and William Herschel are widely recognised as the real pioneers of forensic fingerprinting.

However the story actually begins with the work of another man: Henry Faulds. In the late 1880s, the Scottish physician was working in Japan in a number of roles, one of which caused him to be involved in various archaeological digs. During this time he first stumbled upon the uniqueness of fingerprints after discovering prints left behind by craftsmen in old pieces of ceramic pottery. This allegedly inspired his notion of using fingerprints to identify criminals, at which point he promptly published an article in Nature detailing his thoughts on the matter. In his manuscript, “On the Skin-Furrows of the Hand”, Faulds suggested the possibility of using fingerprints to identify individuals, however did not provide anything to support his theory other than the anecdotal evidence of his own use of fingerprints to identify the perpetrator of a break-in at his hospital. Back in the UK, Faulds shared his ideas with Scotland Yard, but they unsurprisingly had no interest in this somewhat unsupported theory. Incidentally, Faulds also shared his work with Charles Darwin. Although Darwin did not pursue the research himself, he did forward the information to his cousin, Francis Galton. At the time, nothing came of this interaction.

Shortly after Fauld’s publication in Nature, William Herschel, a British civil servant who was based in India at the time, soon published a responding letter in Nature claiming he had been using fingerprints as a means of identification for years. A very public argument over who should claim credit for this idea ensued between the two scientists which lasted for years, though the world paid little attention. There was quite simply no data to support the claims of the two men.

A couple of years later, Sir Francis Galton once again enters the picture. Now heavily involved in the field of anthropometry (the study of measurements of the human body), he began working with Herschel to gather the much-needed data necessary to support the theory of fingerprints as a means of identification. Galton’s research allowed him to collect thousands of fingerprints and ultimately conclude that fingerprints were in fact unique to the individual, could persist on a surface for years if not decades, and could be easily used to develop a system of storing and comparing prints. Galton presented his findings at the Royal Institution, sharing his and Herschel’s research in fingerprinting as a means of identification. Based on Galton’s work, the use of fingerprinting was finally considered by Parliament in 1894, and was soon implemented in criminal investigations. Galton and Herschel were now viewed as the original pioneers of forensic fingerprinting, whereas Faulds later spent years fighting to be recognised as the true founder, petitioning to academic journals, newspapers and even the Prime Minister.

In 1892, anthropologist Juan Vucetich made history by using fingerprint evidence to positively identify the culprit in a criminal case. When the children of Francisca Rojas were found murdered, Vucetich implicated Rojas when a bloody print allegedly proved she was the murderer. Since then, the study and use of fingerprints has been a fundamental aspect of forensic investigations worldwide.

References

Faulds, H. On the Skin-Furrows of the Hand. Nature, 1880, 22.

Stigler, S. M. Galton and Identification by Fingerprints. Genetics. 1995, 140(3), 857-860.

University of Glasgow. Henry Faulds. [online] Available: http://www.universitystory.gla.ac.uk/biography/?id=WH25214&type=P

Interview with Program Director Max Houck

What is your current job role and what does this position involve?

My current role is Visiting Assistant Professor and Director of the Forensic Studies & Justice Program at University of South Florida St. Petersburg. The Program teaches forensic investigative techniques and scientific applications in criminal cases, using structured analytic techniques borrowed from the intelligence community to mitigate and reduce bias, and how to improve the criminal justice system and avoid wrongful convictions. I created the Program, teach in it, and conduct research in these areas.

How did you come to work in the field of forensic science?

I became interested in forensic science through taking anthropology courses for my undergraduate minor; I was originally in International Relations and was going to be a translator (Russian and Japanese). Ultimately, bones made more sense than conjugating irregular Russian verbs and I changed majors. In my Masters work, I was a student of Jay Siegel, who set me on my path to a forensic science career.

What would you say has been the highlight of your career to date?

Being Director of the Washington, D.C. Department of Forensic Sciences. I structured the new agency, created many of its new policies for independent science, and worked with people who remain my heroes for what they do.

During your years working in forensic science, how do you feel the field has changed?

I worry that the field has become a bit of a cargo-cult science–we’ve “drunk our own Kool-aid”, as the saying goes. We believe if we SAY something is “scientific”, then it IS scientific. We’ve also come up with some fairly suspect ways of justifying bad or marginal science and these have been accepted by an all-too-willing court system. That is beginning to change, a little, with some good basic research into the fundamentals of our science but we’re still hampered by trying to be the servant of justice instead of a partner in the process.

In recent years, concerns over the reliability of some forensic techniques have been raised in the media. What steps do you think we need to be taking to ensure that only scientifically reliable techniques are utilised in legal investigations?

First and foremost, forensic agencies need to be independent of law enforcement; that won’t solve everything but it’s a good start to ensure we’re not marginalized. Second, we need to stop worrying about new methods and shore up the ones we’re already using–do they work and, if so, how well? Finally, we have to be better communicators about what we can and cannot say and why. Being pressured by money, time, or politics only gets you shoddy results–just look at any of the latest “forensic failures”.

Finally, do you have any words of wisdom for those pursuing a career in forensic science?

Be a scientist first; the application to criminal cases can come later. Don’t job hop; keep your first job at least two years and then move up or out. And last, don’t worry about ethics, worry about integrity. Ethics is knowing right from wrong and prisons are full of people who know the difference, they just lacked the integrity to make the right choice.