Interview with Forensic Anthropologist Dr Anna Williams

hud pic

What is your current job role and what does this involve?

I am Principal Enterprise Fellow (equivalent to Reader or Associate Professor) in Forensic Anthropology at the University of Huddersfield. My time is divided between teaching undergraduate and postgraduate students, supervising MSc and PhD students, and doing research and forensic casework. I teach on the BSc/MSci Forensic and Analytical Sciences, and the MSc in Forensic Anthropology and the MSc in Risk, Disaster and Environmental Management. Part of my role is also to engage with the public and communicate our research to lay people, including school children, interested adults and other scientists. I regularly present at academic conferences, local interest groups, Science Festivals and public events. This year, I am presenting at the Royal Society Summer Science Exhibition. I have also been featured in several TV science documentaries, and regularly consult for TV shows like Bones, Rosewood and Silent Witness. I also write a blog about my adventures in forensic anthropology.

What initially attracted you to this field of work?

I did a mixture of sciences and humanities at A Level and could never decide which I liked best, so I chose Archaeology and Anthropology as my first degree. There, I was fascinated by what you could tell about individuals by their skeletal remains, for example about hominid evolution. Then I discovered the burgeoning science of Forensic Anthropology, on a short course at Bradford University, and that was it, I was hooked! I love how you can glean all sorts of information from the smallest pieces of evidence. I have always loved logic problems, and forensic anthropology offers the most exciting puzzles. The fact that it is often confronting, challenging and disturbing, and could help to bring criminals to justice, just serves to add to its appeal for me.

Can you tell us about the research you are currently involved in at the University of Huddersfield?

I specialise in decomposition and taphonomy (the study of how bodies decay in different environments). To do this, I use an outdoor decomposition laboratory. I lead a research group currently doing research into the gases given off by decomposing cadavers (we use pigs that have died of natural causes), and comparing that to the efficiency of police dogs that are specially trained to find dead bodies. We’re also looking at how skin colour changes in surface or water environments, and trying to find ways to improve our estimation of post-mortem interval and post-mortem submersion interval. Other research is focussed on the taphonomic changes that occur to bone and teeth in hot, arid environments. I am also running a citizen science project in order to improve age estimation of unknown individuals from dental eruption. There is a webpage and online questionnaire for anyone who would like to help us build a large, modern set of tooth eruption data to see if dental eruption ages are changing.

Aside from research, are you often involved in police casework, and what does this typically involve?

Sometimes I am asked by the police to attend crime scenes or mortuaries to undertake forensic examination of decomposed or skeletonised remains. They can be either the victims of crime, or the remains of people who have gone missing. I will determine whether they are human or animal, and if they are human, I will estimate the age at death, sex, stature and ancestry of the individual(s), and try to say something about their lifestyle, disease, injury and how they died. I work in conjunction with forensic archaeologists and odontologists, as well as pathologists, to reach an identification. I also do consultancy for forensic science providers and, on occasion, a mass disaster company that helps to ‘clean up’ after disaster and repatriate the victims. I am involved in disaster victim identification and the Emergency Operations Centre.

The existence of so-called ‘body farms’ has sparked great interest in the media. Are there plans to establish such a facility in the UK? What are the primary challenges associated with this?

I believe that Human Taphonomy Facilities, or ‘Body Farms’ as they have become colloquially known, are vital for the advancement of forensic science. We owe all that we know already about human decomposition to the Forensic Anthropology Center at the University of Tennessee, and there is so much more to learn. We need to know how human conditions like diabetes, cancer, smoking and drug use affect our decomposition, which is something we cannot learn from experimenting with dead pigs. Unfortunately, a lot of the data generated by the ‘Body Farms’ in the USA and Australia are not directly relevant to forensic cases in the UK or Europe, because of the different climate, insects and scavengers. The UK is falling behind the USA and Australia by not having one of these outdoor laboratories where vital decomposition research can be done on donated cadavers. There was an attempt to establish a Body Farm in the UK in 2011, but this failed for a variety of financial and political reasons. I think the main obstacles to getting one set up in the UK are lack of funding, public awareness and rivalry between academic institutions. I hope that, in the near future, we will be able to create a facility where researchers, academics and practitioners will be able to work together to improve methods of search and recovery, post-mortem interval estimation and identification of human remains.

Do you have any words of advice for students wishing to pursue a career in forensic anthropology?

Forensic anthropology is a very competitive field, and there aren’t many jobs out there, so you need to be dedicated and determined. It can also be hard work and distressing, so decide carefully whether you want to pursue a career in it. The best way to make yourself stand out from the crowd of other applicants to jobs is to have experience, so try to get as much hands-on experience as you can. This doesn’t have to be forensic (although, of course, that would be preferable), but can be in archaeological units or museums or hospitals (or even zoos), somewhere where you can deal with human (or animal) bodies.

Images from Research

These pictures show the progression of decomposition in a small (10kg) pig. The first picture shows the pig in the fresh stage, when post-mortem interval was less than 24 hours. The second picture shows the pig in the active decay stage, 25 days later. The brown froth is decomposition fluid that has been agitated by the movement of maggots. The body was bloated with decomposition gases, but has now collapsed, and the intestines are escaping. The skin has desiccated, but the hair is still intact. The skin has darkened and become leathery in texture. The bones are becoming detached from the body.

pig1

Surface pig 1, day 0

pig2

Surface pig 1, day 25

 

Website: www.forensicanna.com

Twitter: @Bonegella

Also, you can follow #scentofdeath and #teamtaphonomy

Introducing the Controversial Psychoactive Substances Act

Introducing the Controversial Psychoactive Substances Act

As of this week the Psychoactive Substances Act came into effect in the UK, a long-awaited and much-disputed piece of legislation that will attempt to transform the existing drug marketplace. The act will make it an offence to supply any substance that can produce a psychoactive effect (of course with the exception of the likes of alcohol and caffeine), aiming to specifically target new psychoactive substances (NPS) or ‘legal highs’, which have thus far evaded the Misuse of Drugs Act.

But just what are New Psychoactive Substances, and why has it been so difficult to enforce laws against their supply and use?

spice

NPS are synthetic chemical substances created to mimic the effects of existing illegal substances, such as cannabis or ecstasy. These drugs are often designed in such a way that they are sufficiently chemically similar to an illicit drug to cause the desired psychoactive effects, but adequately different to bypass the existing legislation.  The legislation currently controlling illicit substances in the UK is specific in the substances under regulation, meaning any slight changes to the chemical structure of an illicit drug can technically render the drug uncontrolled and legal to supply or use.

New psychoactive substances are typically sold as powders, pills or smoking mixtures (somewhat resembling cannabis). You may have heard these drugs referred to as “legal highs”, rather inaccurately indicating they are legal and even safe to use. But a brief internet search will pull up an array of news pieces highlighting unexpected illnesses and deaths brought on by the use of these drugs. The primary danger surrounding the use of new psychoactive substances is the lack of research involving these substances, exacerbated by the ever-changing and difficult-to-monitor composition of the drugs. In addition to this, as NPS are specifically sold as being unsuitable for human consumption, thus avoiding certain regulations, the user cannot be confident in exactly what they are buying. Although many legal highs do offer a list of ingredients on the packaging, the highly unregulated nature of this market casts doubt on the accuracy of such information. Forensic analysis of NPSs has shown that they may contain unexpected constituents and even quantities of illicit drugs.

The NPS market has boomed in recent years, with new drugs hitting the streets faster than scientists can even identify them. They have thus far been widely available online and in head shops (establishments openly selling paraphernalia for the use of cannabis and other drugs), typically advertised as bath salts or plant food. Unfortunately the ever-changing variety of ‘legal highs’ available has presented forensic scientists with a particular challenge. The analysis of more typical drugs is relatively straightforward, with the analyst armed with well-trialled presumptive tests, analytical methods and libraries for comparison. However as new psychoactive substances are developed with modified chemical structures, they may not react with presumptive tests and library matching may prove useless without a comparison.

The premise of the act has come under great scrutiny, with opponents asserting the Act will blindly ban harmless substances (not true) or that it will be utterly unenforceable (somewhat true). A similar piece of legislation has been instigated in the Republic of Ireland, but with little success, as highlighted by the extremely low number of successful prosecutions under the law. In fact, the implementation of this legislation in Ireland was actually followed by an increase in NPS use amongst teenagers from 16% to 22%. That is not to say the legislation was the cause of this increase, but it is an interesting point nonetheless.

Despite the criticism and uncertainty, the Psychoactive Substances Act will attempt to curb the supply of psychoactive substances and protect potential users of these drugs. Although it will not be an offense to possess new psychoactive substances for personal use, it will be a criminal act to supply such substances. It will be inconceivable to halt the online sale of psychoactive substances, but it will be possible to prevent head shops, of which there are hundreds around the UK, from blatantly advertising and selling these drugs. Although the Psychoactive Substances Act promises to be a difficult piece of legislation to enforce, if at the very least it prevents new psychoactive substances from being freely advertised as a normal and ‘safe’ alternative to drugs, a great improvement will be made. But only time will tell if this new piece of legislation will really reduce the use of these no longer legal highs.

 

References

Home Office.Trade in so-called ‘legal highs’ now illegal. [online] Available: https://www.gov.uk/government/news/trade-in-so-called-legal-highs-now-illegal

New Psychoactive Substances Act 2016 [online] Available: http://www.legislation.gov.uk/ukpga/2016/2/contents/enacted

Investigating Secondary DNA Transfer

Investigating Secondary DNA Transfer

DNA evidence has largely been viewed as the ‘gold standard’ of forensic science, offering a seemingly solid means of linking individuals to crime scenes and, in more recent years, exonerating those wrongfully convicted. Whereas successful DNA analysis previously required a visible biological contribution, for instance a drop of blood, new advances in DNA technology have allowed for profiles to be produced from just a few dozen cells (you may have heard the term ‘Touch DNA’ be used to describe this). But as DNA technology has advanced, the improved sensitivity of DNA analysis techniques has become something of a double-edged sword, with concerns being raised over DNA analysis being too sensitive.

Imagine a scenario. A man and a woman are having an innocuous conversation. Some physical contact happens, perhaps the touching of hands or the brush of a cheek. The woman later experiences a sexual assault and an investigation ensues, an investigation in which DNA evidence is likely to play a pivotal role. During a sexual assault investigation, it is likely that swabs may be taken of a suspect’s clothing and genitals, specifically aiming to detect any of the victim’s DNA. This may particularly be the case if no semen has been detected, necessitating any other means of establishing whether or not sexual contact may have occurred.

But is it possible for a person’s DNA to be inadvertently transferred to the clothing or body of another person through innocent contact, only to later wrongfully incriminate that person? Research recently published in Science & Justice aimed to provide some insight into this question.

The aim of the study was to determine the frequency and amount of DNA transferred from a female to a male’s underwear and genitals following a non-intimate social contact situation. Using a staged scenario in which a male and female are interacting, the male participant was asked to touch the female’s face for 2 minutes and then hold her hands for 3 minutes whilst maintaining a conversation. This exchange provided the opportunity for the direct transfer of DNA from female to male. Following this exchange, the male participant went to the bathroom to simulate urination, offering the opportunity for secondary transfer of the female’s DNA to the male’s underwear and genitals. Other trials also introduced a 6-hour delay between the social contact and bathroom visit. Swabs were then taken of the man’s underwear and penis. In separate experimental trials, the same swabs were taken from male participants immediately following unprotected sexual intercourse to act as a comparison.

Following SGM Plus DNA profiling (routine at the time of the research), female DNA was found on the waistband of the underwear on only 5 occasions out of 30, on the penis in 4 out of 30 samples, and just once on the front panel of the underwear. In no other instances was female DNA detected. Unsurprisingly, this was even lower in trials implementing a 6-hour delay. In comparison to swabs taken from a male following sexual intercourse, transferred female DNA was detected in all samples and in larger amounts. So although the research demonstrated the possibility of the transfer of the female’s DNA to the male’s underwear and genitals (obviously somewhat incriminating if this occurred during a sexual assault investigation), the frequency and level of occurrence was much lower than if sexual intercourse had actually occurred.

The concept of secondary DNA transfer is not novel, and it has been known for some time that it is possible for DNA to be transferred through everyday contact. In fact the very idea of secondary DNA transfer was first described in literature almost two decades ago (Oorschot & Jones, 1997). The aforementioned research follows previous studies conducted investigating similar scenarios but reaching somewhat different conclusions.

Research published last year by the University of Indianapolis conducted their own DNA transfer study in which participants were asked to shake hands for two minutes before one of the participants handled a knife. The study aimed to determine whether this social interaction and handling of the object was sufficient to allow DNA from one individual to be passed to the knife via secondary transfer, without that person coming into any direct contact with the knife itself. Subsequent analysis of the knives showed that in 85% of cases DNA detected on the knife belonged to the participant who had not handled the object, and in one-fifth of the samples they were even the main or only contributor of DNA found on the weapon. This study essentially implies it is possible for someone to be linked to a crime scene via secondary transfer of their DNA to a murder weapon or victim, for instance.

Conversely, research published back in 1997 also conducted similar research, but this time not supporting the idea that secondary DNA transfer can provide misleading results (Ladd et al, 1997). Participants were instructed to shake hands for varying lengths of time before handling an everyday object, such as a coffee mug. The research concluded that a complete DNA profile of the secondary participant (who had not directly handled the object) was never detected. So although various studies have been carried out, although using different experimental conditions, results are to an extent contradictory.

These studies discussed have obvious limitations. The scenarios staged are far from realistic – the average person does not shake someone’s hand for two minutes before handling an incriminating object, which is then immediately swabbed for DNA by investigators. Nor does the research take into account factors that might affect DNA transfer and persistence.

It is worth noting that these concerns are not confined to the research lab. In 2010, former cab driver David Butler found himself imprisoned, accused of murdering 46-year-old Anne Marie Foy. The evidence against him? His DNA allegedly found under the fingernails of the victim. Butler had previously offered up a DNA sample years before during the investigation of a burglary and, although the DNA profile obtained from the victim’s body was merely a poor quality partial match, this was seemingly sufficient to land Butler in prison on remand for nearly eight months. However the DNA evidence was later called into question when it was suggested that Butler, who had a skin condition causing him to shed more skin cells than the average person, could easily have transferred his own DNA to a person or money which was then transferred to the victim via secondary transfer.

Cases such as this highlight the need for further investigation. Although recent research has provided a good starting point for investigating secondary DNA transfer through non-intimate contact, as DNA analysis techniques improve and achieve greater sensitivity, there will be an increased need to extend research. Further studies examining new DNA profiling techniques, different scenarios and the effects of possible affecting factors will be necessary in ensuring secondary DNA transfer in situations of everyday social contact will not be mistakenly interpreted in a criminal investigation.

 

References

Van Oorschot, R. A. Jones, M. K. DNA Fingerprints from Fingerprints. Nature. 387(1997), 767.

BBC News. DNA test jailed innocent man for murder. [online] Available: http://www.bbc.co.uk/news/science-environment-19412819

Cale, C. M. et al. Could Secondary DNA Transfer Falsely Place Someone at the Scene of a Crime? J Forensic Sci. 61(2016) pp. 196-203.

Jones, S. et al. DNA transfer through nonintimate social contact. Sci Justice. 56(2016), pp. 90-95.

Interview with Digital Forensics Expert Angus Marshall

marshall

What is your current job role and what does this typically involve?

I’m an independent forensic computing consultant. Some people would sum it up as “gun for hire”, but the reality is that I get involved in a range of casework for law enforcement, defence solicitors and many types of organisation. Most commonly, I get called in after the standard digital investigation work has been done, so computers & handsets have been imaged and data extracted, but someone is needed to provide expert testimony or to help interpret what’s been recovered. My background in Internet computing is proving more and more useful as most devices now contain data which relates to online activities and working out what’s happened at the other end of the connection is often more important than what’s been found.

Of course, I still get situations where I am, effectively, the first responder and have to do the data capture myself too. Fortunately, I have a good selection of tools and techniques available. My links to academia and DEVCE are a big help there too, as it means I’m able to keep abreast of new ideas.

I also advise on policy matters and help set standards through my membership of the BSI Information Security group and the Forensic Science Regulator’s working group on digital evidence, and am involved with the KTN’s Forensic Science Steering Group where we advise on research topics in Forensic Science.

How did you come to be involved in this area of work?

Largely by accident. I used to be a full-time academic at the Centre for Internet Computing. One of our servers was hacked and it fell to me to investigate it. I was persuaded to write that experience up and present it at a conference. One of the audience put me forward for inclusion on a national database of advisers for the police and a few weeks after that, I found myself helping with a missing persons case which turned out to be a pretty nasty murder. The evidence in that cases involved working out a suspect’s normal pattern of activities and showing that the pattern broke on the day the murder happened, amongst other things.

What do you think are some of the most challenging aspects of your line of work?

Understanding what the real requirements are. Pretty much everyone uses a computer in some form these days so they tend to ask for specific things to be done, often what they think they’d do themselves, rather than asking for help to solve the real problems. My usual approach is to start with something like “OK, I can do that, but tell me why you think it needs to be done” and moving on from there. We often end up doing something totally different which provides a much better answer to the question that needs to be addressed.

How has the field of digital forensics changed during the time you have been involved?

Handhelds have to be the answer to that. There’s been such an explosion in the adoption of smartphones and other personal technology. Everyone has at least one, and frequently several, devices which can tell us a lot about them and their behaviours. It means we have a lot more data to try to extract and process in the limited time available.

We aren’t seeing the predicted downturn in use of conventional computers, though – so we’re dealing with increased data storage on them, and more use of the “cloud” to share data between devices as well.

Has the field of digital forensics been affected by the major changes to forensic science services in the UK in recent years?

To be honest, the digital field was never as centralised as some of the disciplines were. Most, if not all, police forces had, and still have, their own labs, backed up by a few large private sector organisations and lots more smaller providers. What we are seeing is increased pressure due to falling budgets and increasing amounts of data. The other thing that’s causing problems is the regulatory framework. There’s an inherent resistance to taking on the perceived “extra work” required to achieve accreditation and if labs don’t act now they’re going to be in trouble. Having been close to the work, and editing a couple of related ISO standards, I know that it looks bad, but the actions required can result in significant efficiency gains, cost savings and improvements in the quality of evidence.

Do you have any advice for those seeking a career in digital forensic science?

If you enjoy a challenge – go for it! But don’t get fixated on law enforcement as the only option. Our methods are used widely in corporate environments too, especially in dealing with fraud, employee misconduct, network attacks, e-discovery for civil litigation and a whole range of other activities. The law enforcement side of things is really quite a small sector and others could be easier to get into and more rewarding in the long run.

Website: http://www.n-gate.net and http://www.devce.org

Twitter: https://twitter.com/marshalla99

Angus’ book, Digital Forensics: Digital Evidence in Criminal Investigations, is available on Amazon.

 

If you’re a forensic scientist (academic or industry) or a crime scene investigator and would like to be part of this series of interviews, get in touch by emailing locardslabblog[at]gmail.com.

Silencing Spies & Secrets: Radioactive Murder

Silencing Spies & Secrets: Radioactive Murder

Last week the news was awash with a chilling yet familiar photo – the infamous shot of 43-year-old Alexander Litvinenko dying in his hospital bed, his body wrecked by radiation poisoning.

In 2006, the former Russian spy died in London as a result of polonium-210 poisoning, believed to have been ingested via a seemingly innocuous cup of tea. Having fled from his previous life as an officer with Russia’s Federal Security Service (the KGB’s successor), Litvinenko soon became something of an enemy to the Russian government. Publishing a shocking book claiming Russia’s secret service was behind a terrorist attack in Moscow, accompanied by frequent public criticisms of the Kremlin and President Vladimir Putin, it is of no surprise that Russian authorities are suspected of being behind Litvinenko’s ruthless death.

So one fateful night a few weeks before his life ended, the former spy thought nothing of meeting with Andrei Lugovoi and Dmitry Kovtun, both with a history in the KGB, in Millennium Hotel in London to indulge in a pot of tea. But just hours after this innocent beverage, Litvinenko fell terribly ill, passing away 22 days later. His death was later attributed to poisoning by polonium-210.

Unfortunately this is not an unfamiliar story.

The politically well-connected Roman Tsepov succumbed to a similar fate in 2004, falling mysteriously ill and displaying the same symptoms that would plague Litvinenko two years later. His doctor at the time described his illness as “a poisoning without a poison… as if his immune system was switched off”. Although the motive behind his possible assassination was never established, a post-mortem concluded that he had been poisoned by some kind of radioactive material present in a concentration one million times greater than the normal amount.

litv

Alexander Litvinenko (Source: The Independent)

 

Spookingly similarly, Yuri Shchekochikhin a Russian journalist known for writing on the controversial topics of organised crime and government corruption, play victim in a sadly comparable story. Due to fly to the US to meet with FBI investigators in July 2003, Shchekochikhin fell suddenly ill and died. The already suspicious circumstances were heightened by the secrecy surrounding his medical records, and Litvinenko himself later claimed that this man’s death was the result of assassination ordered by government officials, apparently unaware that he would meet the same fate.

A decade prior to this, in 1993, packing company director Vladimir Kaplun is believed to have been the first person to be murdered using radioactive material, in this instance planted in his chair, causing him to eventually die from prolonged exposure to radiation. Although never proven, the use of radioactive materials as a means of murder has been suggested in all of these cases. But just what is a radioactive substance, and what are its effects on the human body?

Radioactive Substances

We all know that everything in the world is composed of atoms – little bundles of sub-atomic particles which group together to produce substances with a whole range of characteristics and potential uses. Some of these atoms are unstable, spitting out energy in the form of radiation from the nucleus as it decays to a more stable state, and it is this type of atom that is referred to as being radioactive.

There are various types of radioactive material, categorised depending on the particles they emit whilst decaying. Ionising radiation is typically grouped as alpha, beta or gamma sources (X-rays and parts of the ultraviolet spectrum are also ionising, but we won’t discuss those here). Alpha particles consist of two protons and two neutrons (essentially a helium atom). Of the types of radiation discussed, alpha particles are the least penetrating, being halted in their tracks by just a few pieces of paper or certainly human skin. For this reason, radioactive material emitting alpha radiation is relatively safe to handle (provided you don’t eat it – then it’s a different story). Beta radiation has a greater penetrating power, having the ability to pass through a few metres of air and a few millimetres of tissue, potentially resulting in burns to the skin and eyes if contact is made. Finally, gamma radiation poses the greatest risk, being able to penetrate skin and clothing to any depth, only stopped by a sufficient amount of lead or concrete.

12456932322116189065cherrypie_Nuclear_warning_sign.svg.hi

 

Alexander Litvinenko was poisoned with an element called polonium-210. Discovered by Marie Curie in the late 19th century, polonium is a naturally occurring radioactive element found in minute concentrations in a variety of places, including inside the human body (though obviously in harmless amounts). There are many isotopes of polonium, but the isotope of particular interest in this case is polonium-210 (the 210 referring to its mass). Polonium-210 emits alpha particles which, although they are poorly penetrating, as discussed earlier, can be devastating if inhaled or ingested, as Litvinenko unfortunately discovered.

The effects of radiation poisoning, though dependent on the dose of exposure, are often predictable and brutal. In the case of ingesting an alpha-emitting radioactive material, such as in the Litvinenko case, the first signs of the trauma about to follow will typically be nausea and vomiting. As the radioactive substance passes through the gastrointestinal tract, the lining of the stomach and intestines are destroyed, breaking away. If the cells attacked by the emitted particles are not instantly killed, they may later become cancerous – though in cases such as this the victim will not survive to endure this. As the GI system is destroyed, the radioactive substance is drawn into the bloodstream and transported around the body to be further deposited in organs and soft tissues, particularly building up in the liver, kidneys, and spleen to continue the destruction of the body. The material will also reach the skin and hair follicles, causing the victim to lose most if not all of his or her hair. The bone marrow will be invaded and damaged or destroyed, causing blood cell counts to plummet (a condition known as pancytopenia). The immune system effectively begins to shut down. Cerebrovascular effects may occur, leading to confusion, convulsions and comas. Within weeks or even days the exposed victim can be dead.

geiger - wiki

A typical Geiger counter (Source: Wikimedia Commons)

Radioactive material can be highly contaminating and dangerous and, unless you happen to be equipped with appropriate radiation detection devices, you will likely be completely unaware of its presence. In the aftermath of the Litvinenko poisoning, investigators tested countless suspected areas which may have been contaminated by polonium-210. Inevitably the teapot and several areas in Millennium Hotel produced high readings for radiation. In addition to this, polonium was found in hotel rooms used by the suspects, a British Airways airplane and dozens of other locations.

Furthermore, the initial detection of radioactive material is not always straightforward. Though various devices and analytical techniques have been developed to aid in the detection of radioactive substances, not all can be successfully applied to the detection of the different types of material (ie. alpha, beta, gamma). This very problem was encountered in the investigation into Litvinenko’s poisoning. When the possibility of radiation poisoning was first raised, a Geiger counter was used to check for signs of radioactivity around his body, but readings were negative. Furthermore, bodily fluid samples were subjected to gamma spectroscopy, but again efforts were futile. The problem with these techniques was that they focussed on gamma radiation, obviously not relevant to a man who had been poisoned with an alpha-emitting substance. Eventually quick-witted scientists cracked the case and discovered the presence of polonium-210, not that the knowledge had any chance of saving the victim.

References

BBC News. Litvinenko inquiry to rule on former Russian spy’s killing. [online] Available: http://www.bbc.co.uk/news/uk-35363782

BBC News. Alexander Litvinenko: Profile of murdered Russian spy. [online] Available: http://www.bbc.co.uk/news/uk-19647226

BBC News. Litvinenko: A deadly trail of polonium. [online] Available: http://www.bbc.co.uk/news/magazine-33678717

BBC News. Russia’s poisoning ‘without a poison’. [online] Available: http://news.bbc.co.uk/1/hi/programmes/file_on_4/6324241.stm

McFee, R. B. Leikin, J. B. Death by Polonium-210: Lessons learned from the murder of former Soviet spy Alexander Litvinenko. [online] Available: https://www.clintox.org/documents/WMDSIG/AACT-WMD-Death_Polonium.pdf

Russell, J. A. Wirtz, J. J. 2008. Globalization and WMD Proliferation. New York: Routledge.

Cover Source: Wikimedia Commons

 

 

 

Interview with Forensic Entomologist Susan Gruner

SG2

What is your expertise within forensic science and what does this type of job role typically involve?

Forensic entomology can be divided into three groups: stored-product, urban and medico-legal (or medico-criminal) entomology. I specialize in the field of medicolegal forensic entomology. Generally speaking, forensic entomologists can estimate a postmortem interval (PMI) or time since death based upon the presence (or lack thereof) of insects collected on or near a body. Certain families of insects arrive in a predictable manner on corpses, especially the calliphorid flies (blow flies). Based upon the ages of specimens collected, a PMI can be estimated. Age of the specimens is directly related to the temperatures that the insects are experiencing; the higher the temperature (obviously to a certain limit), the faster they grow.

In a best-case scenario, when a body is found, a forensic entomologist should be called and he or she would collect and process the insect evidence. The second best scenario would be that properly trained law enforcement personnel would collect the insect evidence and then send it to a forensic entomologist for processing.

On occasion, forensic entomologists have to testify in court, just as would any other expert witness. The testimony usually focuses on time of death, but not always. Sometimes a body may have been moved and the calliphorids present can sometimes help determine such a thing. There was a case where a woman was murdered in a parking lot in the city of Jacksonville (Duval County). Her body was dumped in rural Clay County, but not before those city flies had a chance to deposit eggs on her body. The trial was held in Duval County.

Calliphorid female flies are attracted to areas of trauma on a body, where they will deposit eggs. Sometimes the trauma is not noticeable to the naked eye, but can be determined during autopsy. But forensic entomologists know that flies congregate and deposit eggs on areas of trauma on a body.

In September 2006, I received a call from the Jacksonville Sheriff’s Office that the body of an elderly man had been found in a culvert off of I-10, a major highway. I did not know what a culvert was until this case (for those who do not know, it is a tunnel that carries water under a road). It was necessary to climb down a steep angled wall to make an entomological collection. When I reached the body, I noticed that the man had hundreds of calliphorid larvae around his neck despite a lack of visible wounds or bruised skin. I told the detectives that the medical examiner would find the cause of death to be strangulation. I got a lot of strange looks from the detectives that day, but the autopsy showed the man had indeed been strangled to death.

I guess you could say that being a forensic entomologist requires getting very dirty, too. The first time I ever returned from a death scene, my husband had to have the car detailed because it smelled like human decomposition. But as horrific as it sounds, I continue to be fascinated by what calliphorid larvae can reveal about death and decomposition and how they can help solve crimes.

What led you to become involved in forensic entomology?

I thought I wanted to be a veterinarian, and one of the ways to get into vet school is to major in entomology. On the first day of my first entomology class, the professor handed out an article about the Body Farm in Tennessee. I changed my mind about wanting to be a veterinarian that instant.

What in particular was the focus of your PhD research in forensic entomology?

The main focus of my doctoral research was to study the life cycle of the forensically important calliphorid, Chrysomya megacephala (the oriental latrine fly). The main focus of my research was to study their development rates at different ambient temperatures.

Historically, calliphorid development rates have been studied by placing a few hundred calliphorid eggs in a cup (or cups) in a rearing chamber set to a certain temperature. The time is monitored as the larvae grow through three larval stages, a puparial stage, and then emerge as adults.

But the problem with testing in this manner is that calliphorid masses generate heat. Even a small amount of maggots can generate heat above ambient, thus the set chamber temperature is not really the temperature that the growing larvae/pupae are experiencing. For the development research, I used 10 larvae per container; an amount not capable of generating heat above ambient temperature.

SG

Liver is a standard feeding substrate for calliphorid larvae in colony.  But the small amount of liver needed for only 10 larvae per Petri dish dried up quickly, killing the larvae, so I developed a liver agar feeding substrate that would not dry up1. Then I was able to study precisely how the larvae developed at eight different temperatures.

This was grueling work in which larvae were checked at 4-hour intervals 24/7 for most of the duration of the development research, which took 15 months. As I had no funding to hire anyone to help me, I trained my husband to do it. He took the day shift, going back and forth to the lab every 4 hours as I tried to get some sleep. I spent nights (from 9 PM to 9 AM) in the lab. I was so sleep-deprived that it would have been dangerous for me to drive back and forth during the middle of the night.

There were times when we had to examine every larva individually to determine stage. This required looking at the anal spiracles of a larva under a microscope with a gentle but steady hand. During all those months of research when we were sleep-deprived and miserable, we never squished or killed a larva. I am very proud of that.

I also studied different size maggot masses and their respective temperatures as they grew in age, size and volume. And finally, I studied different models that could potentially be used to calculate age of a larva (or larvae). Most forensic entomologists use a linear model to estimate a PMI, but insect development is not linear, especially that of calliphorids.

Do you believe there are any common misconceptions surrounding this field of work?

There are too many to list, but I will name a few.

  1. It is nothing even remotely similar to anything seen on TV.
  2. Sadly, I know of only one person who is a full-time forensic entomologist in the USA (in Texas). Most who received their M.S. and PhDs studying forensic entomology are not teaching or practicing forensic entomology. They may take a case or testify in court on occasion, but that is rare.
  3. Despite the potential importance of collecting insect evidence at death scenes, it is not done. The vast majority of detectives, crime scene technicians, etc., have no idea how to collect insect evidence and forensic entomologists rarely get called to process the insect evidence at death scenes.

Do you think that there are any significant gaps in research in forensic entomology?

Yes. I would say the biggest problem in this field is the poor quality of research, especially when it comes to studies regarding development rates of forensically important insects. Most (almost 80%) of the manuscripts published in peer-reviewed journals in the past 30 years lack replication and have poor experimental design. This is an embarrassment to the science and needs to change. But, there are many dedicated scientists in this field who are trying to do good work.

Finally, how do you feel about the extent to which forensic entomology is harnessed in legal investigations?

Forensic entomology is overlooked much of the time. Collection of insect evidence is not difficult, but as I mentioned above, such evidence is rarely–if ever–collected.

Twitter: https://twitter.com/Entomophila

 

If you’re a forensic scientist (academic or industry) or a crime scene investigator and would like to be part of this series of interviews, get in touch by emailing locardslabblog[at]gmail.com.

This is Part 6 of our series of interviews with forensic professionals.

Interview Series Part 1 – Interview with Forensic Identification Scientist Alexandre Beaudoin

Interview Series Part 2 – Interview with Forensic Expert Robert Green OBE

Interview Series Part 3 – Interview with Forensic Expert & Consultant Gareth Bryon

Interview Series Part 4 – Interview with Forensic Identification Specialist Donna Brandelli

Interview Series Part 5 – Interview with Forensic Video Analyst David Spreadborough

Interview Series Part 6 – Interview with Forensic Accountant Sundaraparipurnan Narayanan

Determining the Age of a Fingerprint: Is It Possible?

Determining the Age of a Fingerprint: Is It Possible?

During the scrutinising examination of a crime scene, it is entirely plausible for dozens or more fingerprints and fragments of fingerprints to be recovered. Not at all surprising considering how often we touch endless surfaces in our day-to-day lives. Consider how many people might grasp the handle of a shop door in an average day. If that shop were to become a crime scene, how could one possibly distinguish between prints that had originated on the day of the crime and those deposited weeks or months ago? Is it possible to estimate the age of a fingerprint?

Firstly, a quick review of just what a fingerprint is. We all know fingerprints are a series of unique arches, loops and whorls left behind when we touch a surface. But people may be slightly less sure of what these deposits are actually composed of.

Although the composition of a fingerprint is somewhat complex, 95-99% of the deposit is simply water, which will typically readily evaporate. The remaining 1-5% is an intricate mixture of organic and inorganic compounds ranging from amino acids and fatty acids to trace metals. Chloride, potassium, sodium, calcium, hydrocarbons, sterols – the list goes on. A vast concoction of chemicals emitted through our skin and deposited whenever our fingertips touch a surface.

But what we didn’t know until recently, is that these deposited chemicals gradually move with time, and that this movement can be used to determine how long a fingerprint has been on a particular surface. Researchers from the National Institute of Standards and Technology recently stumbled upon this very fact (Muramoto & Sisco, 2015).

Fingerprint when freshly deposited (left) and after 72 hours (right). Credit: Muramoto/NIST

Fingerprint when freshly deposited (left) and after 72 hours (right).
Credit: Muramoto/NIST

Like many discoveries, the research itself was something of an accident. The NIST researchers were initially using analytical techniques to detect trace amounts of illicit substances present in fingerprints. In the process of this investigation, they noticed the movement of chemicals within the fingerprint over time. Fingerprints are made up of ridges and valleys forming unique patterns, the characteristic features that allow investigators to distinguish between prints deposited by different people. These features are imprinted in various chemicals when an individual leaves a print behind. However over time the chemicals composing the fingerprint begin to migrate, moving from the defined ridges of the fingerprint into the valleys, essentially blurring the details of the print.

The researchers focused on particular biomolecules, namely fatty acids such as palmitic acid. By depositing fingerprints on sterile silicon wafers and storing the samples under strictly controlled conditions for a period of time, scientists were able to clearly observe the migration of molecules using a technique known as time-of-flight secondary ion mass spectrometry (TOF-SIMS). After a period of only 1 hour after fingerprint deposition, the friction ridge patterns of the fingerprint were clearly visible with the fatty acid molecules under observation residing along the ridges of the print. However within 24 hours the molecules had diffused into the valleys, blurring the patterns of the fingerprint.

The research thus far has simply been conducted to prove the concept of fingerprint component migration for ageing fingerprints, but further work could investigate time effects on a greater scale and even differences in the migration of different molecules. Although the method is advantageous in that it does not depend on chemical changes in fingerprints, which can be very dependent on individual circumstances, further work would be warranted to establish how environmental differences could affect the rate at which this molecular movement occurs, including temperature and humidity effects as well as those caused by the deposition surface.

As intriguing as this research is, this is not the first time scientists have tried to devise a method of ageing fingerprints using chemistry. In fact, researchers have been attempting to accurately age fingerprints for decades. Research has focussed on the changes in the chemical composition of fingerprints over time. For instance, concentrating on a particular compound, such as cholesterol, and establishing the rate at which the concentration of that compound changes over time (Weyermann et al, 2011). Unfortunately many such studies have found changes in the chemical composition of fingerprints to be too variable and unpredictable, particularly when taking into account the differences between donors and the effects of different conditions. Other studies have attempted to determine the age of a fingerprint based on how well powder adheres to the ridges (Wertheim, 2003), by changes in fluorescence wavelength over time (Duff & Menzel, 1978), and changes in electrostatic charge with time (Watson et al, 2010). A vast array of scenarios have been studied intently.

A method of establishing the age of a deposited fingerprint has been at the forefront of latent print research for a long time, and is likely to continue. Although fascinating advances have been made, scientists are a long way from catching criminals by the age of a fingerprint.

References

Cadd, S. Islam, M. Manson, P. Bleay, S. Fingerprint composition and aging: A literature review. Sci Justice. 2015(55) pp. 219-238.

Duff, J. Menzel, E. Laser assisted thin-layer chromatography and luminescence of fingerprints: an approach to fingerprint age determination. J. Forensic Sci. 1978(23), pp 129-134.

Muramoto, S. Sisco, E. Strategies for Potential Age Dating of Fingerprints through the Diffusion of Sebum Molecules on a Nonporous Surface Analysed Using Time-of-Flight Secondary Ion Mass Spectrometry. Anal Chem. 2015(87) pp. 8035-8038.

National Institute of Standards & Technology. Who, What, When: Determining the Age of Fingerprints. [online] Available: http://www.nist.gov/mml/mmsd/20150824fingerprints.cfm

Watson, P. Prance, R. J. Prance, H. Bearsmore-Rust, S. T. Imaging the time sequence of latent electrostatic fingerprints. Proc. SPIE ‘Optics and photonics for counterterrorism and crime fighting VI, Toulouse, 7838, 783803-1-6, ISBN 9780819483560 (2010).

Wertheim, K. Fingerprint age determination: is there any hope? J. Forensic Identif. 2003(53), pp 42-49.

Weyermann, C. Roux, C. Champod, C. Initial Results on the Composition of Fingerprints and its Evolution as a Function of Time by GC/MS Analysis. J. Forensic Sci. 2011(56), pp 102-108.

Interview with Forensic Expert Robert Green OBE

BG

What is your current job role and what does this involve?

I’m currently Director of Undergraduate Studies for the forensic science programmes at the University of Kent. The role involves helping to lead the forensic science programs in the School of Physical Sciences. My job is primarily one of teaching and I’m involved in the delivery of modules across all years. Additionally the role involves some administrative responsibilities in order to continue to develop the students’ experience at the University. My ambition is to develop students to the best of their abilities; to share with them the very latest news and events affecting forensic science and, above all to produce good quality graduates with a focus on employability. I hope that some prospective students will consider studying with us in Kent. I make sure that we make the most effective use of social media and have a very active Facebook page which I post to most days. Please try to take a look and perhaps like the page and maybe keep up-to-date with some of the events at home and abroad. The page can be accessed here and I hope you like some of the content.

What has been the highlight of your career to date?

I suppose it was being made an OBE for services to forensic science in the Queen’s Birthday Honours list of 2008. Although the finer detail of honours nominations are not shared with the recipients – I very much suspect it was perhaps for some of the work I lead whilst at the Home Office. This was looking at the so-called cold cases and using the most up-to-date DNA technology to resurrect these cases and bring closure to victims. I think that over 100 or so rapists were convicted by these and other initiatives which gives one a sense of immense satisfaction knowing that justice has been served. At the same time, we were able to develop good practice in this area and share this internationally. Working at the University of Kent provides a fabulous opportunity to share some of the good practices with the forensic scientists of the future. I hope you’ll take a look at our site, accessed here.

Additionally I am very proud of my Fellowship of the Chartered Society of Forensic Sciences awarded in 2014. Having moved into academia, I’m particularly pleased we have been able to generate students’ involvement in their professional body and get them engaged from the beginning of their study. For example, at the University of Kent, we’re able to offer free membership of the professional body to all our students from year one all the way through their studies. This helps us to engage with the society and ensure that students are provided the opportunity to attend conferences and develop themselves as their studies progress. I think the block membership idea of engagement has been a highlight of my time on Council for the Chartered Society.

Conversely, what have been some of the biggest challenges?

Looking back – I think this would hark back to my time working operationally as a Crime Scene Manager. The work was incredibly demanding both in terms of its demands on family/social life and of course the very sensitive nature of the work itself. Please spare a thought for those who work operationally both in the laboratory setting and also at the crime scene. Whilst the work may appear glamorous and appealing – nevertheless it is immensely hard work and of course has to be conducted with immense precision and attention to detail if disasters are to be avoided. Thankfully I survived my operational period without any/too much drama but the saying I always recall was “… you’re only as good as your last job”. In these challenging times – particularly let’s not forget the forensic scientists working tirelessly in the laboratory; seldom gaining recognition but nevertheless absolutely vital to the effectiveness of our criminal justice system.

How do you feel the field of forensic science has changed throughout the time you have been involved in it?

This must really be the introduction of automated fingerprint databases and of course the DNA database in 1995. Looking back it’s hard to imagine the 1,000 or so crime scenes I examined personally each year and the seemingly low return on the ‘fingerprint investment’. Truthfully – at the end of each year I could honestly count a handful of good quality fingerprint identifications made under the manual system. The advent of automated fingerprint databases absolutely revolutionised this and of course made both volume crime and major crime examinations much more fruitful in terms of fingerprint identifications. Reflectively though, this significant ramp-up in throughput has not always been matched by the detective’s ability to convert these fingerprint identifications into offences that are detected. The volume of fingerprint identifications produced by fingerprint experts often outstrips the ability to ‘action’ these in real time. In this sense, one advancement has led to another challenge. In order to get a sense of the contribution forensic science brings to criminal justice; let’s just reflect for a moment on the NPIA study in (I think) 2009. This study examined murders in England and Wales between the years 2009 and 2010. The findings of this report suggested that the contribution of forensic science was significantly greater than had previously been reported. For example, DNA being used in more than 95% of murder enquiries; fingerprints used in greater than 72% of murder enquiries; footwear used in greater than 35% of murder enquiries. I really hope that the value of forensic science is not undervalued in our current age of shrinking police budgets and austerity.

The second of course has to be DNA and the significant advances in sensitivity. Sadly, where we once led the world in DNA technology we now, to some extent, lag behind. For example, only recently the UK has changed to the DNA 17 multiplex; just at the time some others are perhaps moving to more discriminating DNA chemistry. I recall how the early DNA test required DNA around the size of a 50p piece and of course many of the examinations we undertook at the time were not successful. Of course this doesn’t mean to say they cannot be revisited and the case reinvestigated. It’s interesting to reflect that the new DNA test requires around 80 cells which is in the order of 500 pg. of starting material. Perhaps just think of what this means for a moment. If we consider that a single sugar crystal is in the order of 1 milligram (mg). Dividing this by 1,000 would give us a microgram (µg), further dividing by 1,000 to give us a nanogram (ng) and further dividing this by 1,000 gives us a picogram (pg); a  far cry from the days of 50p piece. Of course this brings with it other challenges in terms of increased sensitivity and I hope these dramatic improvements will not be marred by poor crime scene practices leading to contaminated results.

Looking to the future one can’t fail to be impressed by the new Rapid Hit DNA technology. This self-contained and rapid DNA processing enables profiles to be turned around in around 90 minutes. This will undoubtedly revolutionise the speed at which DNA profiles can be obtained and perhaps enable samples to be searched within the custody time limits. Of course, this speedier DNA process will require matches to be actioned in real time and hence will bring some challenges for the police service.

Forensic science provisions in the UK have been under much debate since the closure of the FSS. What do you feel is the greatest issue in forensic science in the UK at present?

I’m not entirely sure it’s changed necessarily for the better. Formally I worked at the Forensic Science Service and hence appreciate, with pride, the contribution of all forensic scientists over the years. Accepting the economy of the age and of course without passing any judgement, we might nevertheless want to reflect a moment on this. The Forensic Science Service has been closed and I sense that we will not see the likes of this type of organisation again in the public sector – certainly in my lifetime. What’s done – is done but there is perhaps a concern that the shrinking forensic marketplace may ever increasingly make it less viable for some suppliers of forensic services. Likewise the access and availability to forensic testing from the defence perspective is perhaps a little worrying to say the least. In particular, fibre analysis is often seen as costly/unnecessarily when compared against other forensic science techniques. Nevertheless I can’t help but think we miss two major points here. The first of these is that we should never underestimate the exculpatory value of forensic science from the defence point of view. Depending upon the details of the case – the presence or absence of forensic material may support either the prosecution or defence. One might share some sense of unease that forensic submissions are put together (and of course paid for) primarily by the police service. Without doubt, colleagues in the ‘service’ do an outstanding job – protecting us all and keeping us safe. Nevertheless (as one who has had some responsibility for constructing these cases in the past) I wonder how eager I would have been to have submitted materials to the laboratory which might not be seen to further the prosecution.

Without wishing to be alarmist – the current situation might appear far from ideal. Accepting everything which I’ve said already about the tightness of police budgets – nevertheless my sense is that we may be sleepwalking towards a breakdown in the external market for forensic science provision. I feel that the decade may be marked by some significant miscarriages of justice based perhaps not on what is submitted for forensic testing but what isn’t or what is examined inappropriately. Naturally if the items are screened out (from the prosecutions perspective) then they are not submitted right from the very outset. Perhaps my advice to those regulating forensic science might be to look for what is not submitted as much as determining the quality of what is.

How do you feel about the amount of research being conducted in forensic fields of work?

Previously of course the FSS and others rather took the lead. Whilst there are some rather promising indications that research is continuing I think we have to deal with realities. Forensic providers in the UK may continue to find it difficult to fund research to the level we previously enjoyed. I think it’s unlikely to see them investing to the level previously. There are some green shoots here and there but nothing really which resembles the significant – several million pounds per annum budget we had perhaps become used to. Of course that doesn’t mean to say that research won’t continue both at home and abroad and time will tell I guess.

Finally, do you have any words of wisdom for those pursuing a career in forensic science?

I think two points sum it up. Firstly – be interested and secondly work hard. Try to have your career path mapped out to the best of your ability. I think it’s going to be ever increasingly important for students to have a good idea of what they want to do as early as possible. Not only are universities producing many good graduates each year but also job opportunities may not necessarily appear at once. Try not to be disappointed and pessimistic and keep trying if you want to pursue a career. You may find that you have to take a lesser role in order to get a shoo-in and so perhaps be a little realistic at least in the early days. Having decided what type of career path you are seeking to follow – choose a university course which will help you to get a foot in. For example, those seeking roles in forensic investigation may be drawn more to these types of courses. Those who would seek a more laboratory-based or traditional forensic science role would be best advised to choose a program with a good level of scientific content. Of course, those who seek roles wider afield (for example digital forensics) ought to choose the appropriate course to help them get their foot on the ladder.

Don’t underestimate how much you will have to do put into your study. Furthermore please don’t underestimate how hard you will have to work to pursue your ambition. It is achievable and within your grasp if you’re interested and prepared to put in the legwork and prepare for some frustration as you find your first job. Once in your role – work hard, be fascinated by the topic and all will be good.

Finally – try to engage with your professional body, namely the Chartered Society of Forensic Sciences. Students gain massively by membership of their society – enabling them to attend conferences, keep abreast of recent events in the profession and perhaps begin to develop a professional understanding of what is happening both in academia and within the mainstream forensic science delivery. Perhaps you might want to begin by taking a look at the webpages and know that you will get far more out than you put in.

Good luck and best wishes

If you’re a forensic scientist (academic or industry) or a crime scene investigator and would like to be part of this series of interviews, get in touch by emailing locardslabblog[at]gmail.com.

This is Part 2 of our series of interviews with forensic professionals.

Interview Series Part 1 – Interview with Forensic Identification Scientist Alexandre Beaudoin

Scientist Special: William R. Maples

“That’s how I feel about the skeletons in my laboratory. These have tales to tell us, even though they are dead. It is up to me, the forensic anthropologist, to catch their mute cries and whispers, and to interpret them for the living, as long as I am able”. – William R. Maples in Dead Men Do Tell Tales.

William R. Maples (Source: http://anthro.ufl.edu)

William R. Maples (Source: http://anthro.ufl.edu)

As an internationally-renowned forensic anthropologist, William R. Maples travelled the world to offer his expertise to over a thousand cases, fighting to not only identify skeletal remains but also uncover how they died.

Born on 7th August 1937 in Dallas, Texas, Maples developed an early fascination with anthropology and death investigation, allegedly when a deputy sheriff showed him autopsy photos of the infamous duo Bonnie and Clyde. After receiving his Master’s Degree in 1962, he spent a short time working in Kenya studying primates, later being awarded his PhD in anthropology from the University of Texas in 1967. He began his career with a number of teaching positions at Western Michigan University and the University of Florida at Gainesville, later taking on the role of Curator of Physical Anthropology at the Florida State Museum. He was President of the American Board of Forensic Anthropology and a fellow of the American Academy of Forensic Sciences.

During the 1970’s, Maples began offering his expertise to legal death investigations, aiding in the identification of victims and conclusion of cause of death, working with a number of police departments. This further extended to working alongside the U.S Army’s Central Identification Laboratory in Hawaii, examining the remains of military personnel.

Throughout his career he applied his expertise and guidance to hundreds of cases, some of which involved particularly high profile investigations. Perhaps his most famous case is that of the investigation of the Romanov family. The Romanovs were members of a Russian royal family with Nicholas II as Tsar. However in 1918 he was forced to give up his throne and he and his family were arrested and brutally executed by the Bolsheviks, a group of Russian communists who would soon become the dominant political power in Russia. In the early 1990s the bodies of the Romanov family were recovered from a mass grave, with William Maples leading a team of forensic experts in the investigation. They ultimately concluded that the remains were in fact those of the members of the Romanov family, with DNA testing confirming this.

In 1991 Maples was also part of the team examining the remains of former President Zachary Taylor, rumoured to have been murdered by arsenic poisoning. A former humanities professor at the University of Florida, Clara Rising, called for further tests to be carried out, convincing Maples to lend a hand and examine the remains. His investigation aimed to put these claims to rest and ultimately concluded that the cause of death had been gastroenteritis.

In 1994, Maples was part of the team that laid to rest a vicious murder case from the 1960s. In 1963, civil rights leader Medgar Evers was assassinated as he returned home one day. When taken to hospital, he was at first refused entry because of his race, and later died, bitterly just hours after President John F. Kennedy delivered a speech in support of civil rights. White supremacist and member of the Ku Klux Klan Byron De La Beckwith was arrested under suspicion of his murder, but managed to escape justice. But 30 years later when the case was re-opened, William Maples helped exhume the remains of Evers for an autopsy, eventually leading to the long overdue conviction of Beckwith.

This scrapes the surface of Maples’ involvement in death investigations, which extends to the examination of the remains of Joseph Merrick (the ‘Elephant Man’), the investigation of the 1996 ValuJet 592 disaster, and the study of the remains of victims of the Gainesville student murders.

In 1995 he was diagnosed with brain cancer and, although continuing to work for two more years despite this, passed away on 27th February 1997 at the age of 59 years.

You can read William Maple’s book, Dead Men Do Tell Tales: The Strange and Fascinating Cases of a Forensic Anthropologist, to gain a further insight into his life and career.

References

Herszenhorn, D. M. 1997. William. R. Maples, 59, Dies; Anthropologist of Big Crimes. [online] Available: http://www.nytimes.com/1997/03/01/us/william-r-maples-59-dies-anthropologist-of-big-crimes.html

Maples Center for Forensic Medicine. W. R. Maples. [online] Available: http://maples-center.ufl.edu/organizations/people/william-r-maples

Maples, W. R. Browning, M. 2010. Dead Men Do Tell Tales: The Strange and Fascinating Cases of a Forensic Anthropologist. California: Doubleday.

Williams, R. C. 2015. The Forensic Historian: Using Science to Reexamine the Past. Abingdon: Routledge.

Killer Cocktails: The Chemistry Behind the Lethal Injection

Killer Cocktails: The Chemistry Behind the Lethal Injection

In many countries worldwide, including the United States, lethal injection is used as a humane method of executing a death row inmate. With the lethal injection, the life of the inmate can theoretically be cleanly and swiftly ended through administering a number of drugs, with no pain and minimal trauma.

The debate over the lethal injection hit the news again last month when the U.S. Supreme Court ruled against claims that the use of a drug used in lethal injections (midazolam hydrochloride) violates the Eighth Amendment (relating to prohibiting cruel and unusual punishment). Despite this method of capital punishment largely replacing supposedly less humane forms of death such as the electric chair and hanging, there is still great debate over the ethics of certain drugs used, and whether they actually do provide a swift and pain-free death.

But what drugs are involved in this lethal cocktail, and how do these end life in an apparently ethical manner?

The procedure for lethal injection can vary across different countries and even different states. In the United States, execution by lethal injection is typically achieved through the intravenous use of three drugs in succession, each with a different purpose, though in some instances a single-drug method is used, usually involving a lethal dose of anaesthetic.

Sodium Thiopental (Source: Chemspider)

Sodium Thiopental (Source: Chemspider)

But let’s look at the three-part cocktail. The first drug to be administered is usually a barbiturate to act as an anaesthetic (painkiller), used to ensure the remaining steps in the procedure do not cause any pain. Traditionally sodium thiopental is used, a fast-onset but short-acting barbiturate. Barbiturates are compounds which can ultimately produce anaesthetic effects. They act as agonists of gamma-aminobutyric acid (GABA) receptors, which are inhibitory neurotransmitters in the central nervous system. By binding to this receptor, the activity of the central nervous system is depressed, bringing about effects ranging from mild sedation to general anaesthesia. In this instance, a sufficient dosage is administered to render the inmate unconscious, thus ensuring a painless procedure. However some have argued that the fast-acting effects of sodium thiopental can wear off before the execution procedure is complete.

Succinylcholine Chloride (Source: Chemspider)

Succinylcholine Chloride (Source: Chemspider)

Once the inmate is unconscious, a neuromuscular-blocking drug is then administered, generally succinylcholine (also known as suxamethonium chloride) or pancuronium bromide. Compounds such as succinylcholine bind to acetylcholine receptors, blocking the action of acetylcholine, a neurotransmitter essential in the proper functioning of skeletal muscle. When succinylcholine binds to this receptor, a cation channel in the receptor opens and depolarisation of the neuromuscular junction occurs. Normally when acetylcholine binds to this receptor, it soon dissociates following depolarisation and the muscle cell will be ready for the next signal. However compounds such as succinylcholine have a significantly longer duration, ultimately resulting in paralysis. In short, administering a drug such as succinylcholine prevents acetylcholine from communicating with the muscles and thus paralyses the inmate’s muscles, including those used to breathe. Other drugs such as pancuronium bromide can also be used, which have a different mechanism of action but ultimately achieve the same final result of muscle paralysis.

Finally the salt potassium chloride is administered. Within the body a variety of salts are vital for brain function, transmission of nerve signals and the beating of the heart, and these salt levels are tightly regulated by the body. In the normal functioning of the body, the majority of potassium is confined to the cells, with very little being present in the bloodstream at any one time. The introduction of a large amount of potassium chloride disrupts this electrochemical balance as the body’s cell are not able to equilibrate, rendering the cells unable to function, leading to cardiac arrest. In simpler terms, the overdose of potassium chloride brings about a condition known as hyperkalemia, in which the potassium concentration in the body is too high, causing the heart to fail. The inmate is officially declared dead when a cardiac monitor indicates the heart has stopped.

Recently, the drug used to initially render the inmate unconscious, sodium thiopental, has been difficult to obtain for a number of reasons, thus some states in the U.S. have used midazolam hydrochloride, a drug which has ultimately caused a great deal of controversy in recent years, such as in the Clayton Lockett case. This benzodiazepine is commonly used as a sedative, but when used during the lethal injection procedure, it is generally combined with an opiate. This is because midazolam itself has no analgesic (painkilling) effect, thus an additional drug is required to achieve this. Despite its recent use, claims have been made that a number of executions using this drug resulted in the prisoners showing signs of consciousness and gasping, suggesting that they were not quite as unconscious as intended. If the inmate is not unconscious when the muscle paralyser and electrolytes are administered, they may experience suffocation due to the muscle paralysing agent and burning caused by the potassium chloride.

So there we have it – some of the primary drugs administered during the lethal injection procedure and how they react within the body to bring about death. For more information on the death penalty (namely in the U.S), visit the Death Penalty Information Center.

References

Johnson, B. A. 2011. Addiction Medicine: Science and Practice Volume 1. New York: Springer.

Kroll, D. 2014. The Drugs Used in Execution by Lethal Injection. [online] Available from: http://www.forbes.com/sites/davidkroll/2014/05/01/the-pharmacology-and-toxicology-of-execution-by-lethal-injection

Kemsley, J. 2015. Sedative for Lethal Injections Affirmed. [online] Available from: http://cen.acs.org/articles/93/i27/Sedative-Lethal-Injections-Affirmed.html

Cover Image Credit: Thomas Boyd (The Oregonian)