Tracking Illicit Drugs with Strontium Isotope Analysis

Tracking Illicit Drugs with Strontium Isotope Analysis

The manufacture and distribution of illicit drugs such as heroin is a primary focus of many major law enforcement organisations worldwide, including the Drug Enforcement Agency (DEA) in the United States and the National Crime Agency (NCA) in the United Kingdom. Unfortunately, as drug shipments pass hands between dealers and cross borders so rapidly, it can be difficult if not impossible to trace a batch of drugs back to an initial manufacturer. As a result of this, the chances of locating and arresting the manufacturers of illicit drugs can be slim.

To a forensic drugs analyst, a whole range of characteristics can be examined and used to classify and compare different batches of the same drug, including physical appearance, packaging, and chemical composition. To an extent, heroin chemical signatures are already beneficial in comparing different batches of the drug in attempts to establish links and possible sources of the narcotics. This may be based on agents or adulterants a product has been cut with, and the relative concentrations of those substances. The manufacturing process itself can vary in terms of chemicals and apparatus used and the skills of the manufacturer, resulting in further characteristic differences in the chemical profile. However these differences may not be distinct enough to be valuable and are certainly not able to pinpoint the country from which a batch originated. Though there is still no reliable method of tracing an illicit drug back to a particular location, ongoing research is aiming to change this.

One method of studying the history and even origin of a sample is to use isotopic composition. Isotopes are different forms of elements that are incorporated into substances in the environment in varying ratios and abundances, influenced by a number of factors that can alter these ratios. These processes can be described as isotopic fractionation. Interestingly, isotopic ratios can be characteristic to different regions of the world, enabling certain materials to be traced back to the geographic region based on the ratios of particular isotopes contained within that material. With this in mind, they have often been used to trace unidentified human remains to a particular location or study the origin of food products. Focusing on isotopes allows for heroin samples to be studied and compared based on regional characteristics as oppose to the variation caused by the production process.

For the first time, researchers at Florida International University have utilised strontium isotope ratio analysis to determine the provenance of illicit heroin samples. 186 unadulterated, undiluted heroin samples of known origin were obtained from a number of geographic regions including Southeast Asia, Southwest Asia, South America, and Mexico. Of a particularly challenging nature is South American heroin and SA-like Mexican heroin, which can be extremely difficult to differentiate based on their chemical compositions alone. Heroin samples were dissolved via a microwave-assisted acid digestion method before being subjected to a technique known as a multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS). This instrument utilises an inductively coupled plasma ion source to ionise target analytes, which are then separated and analysed by the mass spectrometer. The use of MC-ICP-MS allows for the strontium concentration of particular samples to be determined. The strontium isotope ratio (87Sr/86Sr) value of each individual sample was then compared with the overall mean values of ratios from different regions in order to establish the likely origin of that particular heroin sample. Samples from the same geographic region would be expected to exhibit a similar isotope ratio.


Multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) Source:

The results demonstrated the possibility of differentiating between heroin of different geographic origin. South American and Mexican heroin samples were correctly classified 82% and 77% of the time respectively. South East and South West Asian heroin samples were somewhat more difficult to differentiate due to more of an overlap between strontium isotope ratio values. SE Asian samples were correctly classified 63% of the time and SW Asian samples only 56% of the time. It is not clear whether this elemental strontium is endogenous or the result of external contamination, but either way it is sufficiently characteristic to be associated with a particular geographic location.

The strontium isotope composition of heroin can be affected by a number of factors, including the soil in which components are grown and groundwater in the area, which can result in region-specific isotope compositions. The use of strontium isotope ratio analysis has presented promising results in the origin determination of illicit heroin. Although a larger scale study incorporating samples of a more worldwide origin would be ideal, initial results suggest that this technique could allow for an unknown illicit drug sample to be traced back to a country of origin, aiding criminal intelligence agencies in the war against drugs.


Debord, J., Pourmand, A., Jantzi, S., Panicker, S. & Almirall, J. Profiling of Heroin and Assignment of Provenance by 87Sr/86Sr Isotope Ratio Analysis. Inorg Chim Acta. In press (2017).

Instant Insect Identification to Aid Forensic Entomology Investigations

Instant Insect Identification to Aid Forensic Entomology Investigations

During the investigation of a suspicious death, entomological (that is, insect-related) evidence may be able to provide vital clues as to when the victim died. Determining time since death, or post-mortem interval, can be one of the most important aspects of such an investigation, so it comes as no surprise that a great deal of research has been directed towards improving these estimations.

Insects can play a huge role in estimating time since death. Various types of species of insect will often visit the scene of a death in a relatively predictive manner, either to feed on the decomposing remains (known as necrophagous insects), to prey on other insects present, or to find a suitable place to lay their eggs. Blow flies, a group which includes common flies such as the bluebottle and the greenbottle, are often of particular interest. Forensic entomologists will typically study the insects, eggs and larvae present at a death scene, utilising the type of bugs found and their stage of development to track back to the likely time at which they arrived, thus when the victim may have died. However in order to accurately do this, entomologists must often collect insect specimens for closer inspection and even to rear to adulthood in order to determine the exact species, which is evidently a time-consuming process requiring a high level of expert knowledge.

For the first time, researchers at the University of Albany have applied a technique called direct analysis in real time with high resolution mass spectrometry, or DART-HRMS for short, to the analysis of blow fly eggs. Published in the latest issue of the journal Analytical Chemistry, the technique has demonstrated the possibility of almost instantly differentiating between different fly species based on the amino acid profiles of the eggs.

DART-MS, developed in 2005 by Dr Chip Cody of JEOL, is an ambient ionisation mass spectrometry technique that allows for samples to be directly analysed without any time-consuming sample preparation steps, and perhaps most importantly without destroying the sample. The sample is simply presented in its native state between the ion source and the inlet of the mass spectrometer, enabling compounds present in the sample to be ionised and drawn into the instrument for analysis and identification.


Sampling interface of DART-MS. Source: Wikimedia Commons

During this investigation, researchers used pieces of pork liver to attract a number of different blow fly species before transporting them to the laboratory. The flies were reared until they lay new eggs, which would be the focus of the analysis. The study utilised specimens of a number of species, including Calliphora vicinia, Lucilia coeruleiviridis, Lucilia sericata, Phormia regina, along with specimens from the Phoridae and Sarcophagidae families. Even to the eye of an expert, the eggs of these specimens are often indistinguishable. The eggs were simply placed in an ethanol solution and the mixtures directly subjected to DART-HRMS analysis.

The technique focused on the analysis and identification of amino acids in the eggs, essentially enabling researchers to produce a chemical fingerprint unique to eggs of a particular species. Examination of the mass spectra showed that the different species exhibited a unique chemical fingerprint, and by using multivariate analysis it was possible to better visualise the similarities and differences between amino acids detected in the eggs of different species.

Unsurprisingly, many amino acids were common to multiple species. For instance, alanine, isoleucine and proline were detected in four of the species, whereas valine was detected in all but one of the egg samples. However some compounds were unique to particular species, and it is these unique amino acids that will prove to be most beneficial in differentiating between the eggs of different species. For instance, glutamine and tryptophan were only present in the eggs belonging to P. regina. Interestingly, the research also demonstrated the ability to distinguish between families as well as species, with some compounds only detected in the eggs of specific families.

By using this particular technique, almost instantaneous identification could be achieved. Of course this research has included only a very limited number of species, thus a much bigger investigation would be necessary before the technique would really be beneficial to a legal investigation. Not only would further species need to be included, but another potential development would be the production of a chemical profile database against which unknown insect samples could be compared. Developed further, the use of DART-MS could save investigators a lot of time in the identification of insects of forensic interest.



Cody, R. B., Laramée, J. A. & Durst, H. D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 77, 2297–2302 (2005).

Giffen, J. E., Rosati, J. Y., Longo, C. M. & Musah, R. A. Species Identification of Necrophagous Insect Eggs Based on Amino Acid Profile Differences Revealed by Direct Analysis in Real Time-High Resolution Mass Spectrometry. Anal. Chem. (2017) In Press


Interview with President of IsoForensics Inc., Lesley Chesson

southern-utahDifferent forms of elements–called isotopes–are found everywhere in the environment. These isotopes are incorporated into materials in varying ratios and the abundances of different isotopes thus serve as a record of the material’s formation. Analysis of a material for its distinct isotope signature can subsequently be used to reveal its history. Investigators have applied stable isotope analysis to a variety of materials of forensic interest including drugs, explosives, money, food, ivory, and human remains. For example, the isotopes in human hair protein can reveal the age of an individual, what s/he ate, and even how often (and where) s/he travelled.

What is your professional background and how did you come to be involved in IsoForensics?

I have a master’s degree in biology, with a lot of microbiology and chemistry experience. I entered the world of isotope forensics when I was hired to raise Bacillus subtilis (a cousin of the anthrax bacterium) under a variety of conditions – in liquid media, on agar plates, with different nutrients, etc. Because organisms record information about the environment in the isotopes of their tissues, the goal of this project was to develop models that allowed investigators to predict the growth conditions of a dangerous bacterium–such as anthrax–from its isotopic characteristics.

From its start in academia, IsoForensics developed into a private analytical services and research firm that explored novel forensic applications of isotope analysis. I enjoyed the challenges offered by that exploration. Since my first work on the B. subtilis project, I’ve been involved in other projects on human remains, foods and beverages, illicit drugs, and explosives.

Tell us about the work IsoForensics is involved in and what kind of clients do you typically work with?

Currently, IsoForensics provides a lot of human remains testing in unidentified decedent cases. The goal is to use the isotope records contained in hair, nails, bone, and teeth to reconstruct the travel history of individuals and provide new evidence on their origins: Were they local to the area of discovery? Had they traveled prior to death? Where might they have traveled? We work with a variety of law enforcement groups in this casework.

In addition to service work, we conduct basic and applied research through funded grants and contracts. One recent project has started to investigate the origins and ages of seized elephant ivory to understand the structure of illegal trade networks in Africa and Asia.

What are some of the most common sample types you are asked to analyse, and does anything pose a particular challenge?

In any given month, we can analyze a variety of materials – human and wildlife remains, illicit drugs, explosives, etc. One of the most challenging measurements we make is for strontium isotope ratios. There is so little strontium contained in organic materials that prep work takes place in clean lab settings. The preparation of materials for radiocarbon dating is also challenging since we must be extremely careful about contamination of “old” materials with “modern” carbon. However, these challenges are worthwhile since strontium isotopes can provide potentially useful geolocation data about materials while radiocarbon dating provides quantitative information on the “age” of materials.

Are there any areas of isotopic analysis that could benefit from further research and development?

Yes. Isotope forensics benefits from better and better models/methods for interpreting data. It’s one thing to compare isotope measurement results from sample to sample or from sample to a reference databank, but it’s another thing altogether to understand the process(es) driving isotopic variation in materials. For example, are the results we observe due to differences in TNT manufacturing process? Or coca plant physiology? Or elephant diet?

Isotope analytical techniques also change over time as better instrumentation is developed. Understanding the impact of different analysis techniques on measured isotope ratios is extremely important when comparisons are made – especially in legal settings. A major focus of the field is the standardization of practices and protocols, to generate comparable results over time and space (e.g., from lab to lab).

How has the need for isotope analysis in forensic investigations changed over the years, if at all?

The forensic application of isotope analysis has been increasing the past 10-20 years. This is partly due to changes in analytical techniques, which have made isotope ratio measurements faster and cheaper. In addition, those who could benefit most from forensic isotope data–law enforcement, regulators, etc.–have become more aware of the technique and it potential usefulness in various types of investigations. We as forensic scientists and isotope analysts can do even more to spread awareness about the technique and its many applications.

Finally, do you have any advice for students hoping to pursue a career in this field of work?

Isotope analysis is one (extremely useful!) tool in a forensic scientist’s toolbox. Having a background and training in other areas–such as anthropology, analytical chemistry, biology, biochemistry, geology, law, or statistics–can be very important when applying isotope analysis techniques and interpreting the resultant data. The field of isotope forensics is relatively small compared to some other forensic disciplines, so be sure to read papers, attend meetings, and network with scientists working in the field.

Visit the Isoforensics Inc. website for more information.

Fragrance Forensics: Using Perfume to Catch the Culprit

Fragrance Forensics: Using Perfume to Catch the Culprit


Every day we apply chemicals to our bodies in the form of perfumes, colognes, deodorants and moisturisers, producing a concoction of pleasant scents that can be quite unique. It is well-known that perfumes and other fragrances can be potent and persistent, lingering on clothes and skin for hours if not days. Furthermore, these aromatic mixtures lend themselves to being easily transferred from one person to another through physical contact.

As the field of forensic science advances, investigators are looking for different ways in which they can identify suspects and connect individuals, and perfume may be an ideal target. What if the fragrance worn by an individual could be identified on a chemical level and used to link that person to a particular person or place? Simona Gherghel and fellow researchers at University College London have aimed to achieve this using analytical chemistry techniques.


Linalool (left) and limonene (right), common components in perfumes and colognes.

Different perfumes and colognes are composed of a variety of volatile organic compounds (VOCs), which provide the products with their powerful and characteristic scents. Compounds commonly detected in such products include linalool, limonene, coumarin, geraniol and eugenol, often in varying quantities and mixed with an assortment of other components. Once applied, these fragrances are absorbed by clothing and skin and can be readily transferred to fabrics and other surfaces.

Using gas chromatography-mass spectrometry (GC-MS), a well-established analytical technique frequently utilised in forensic enquiries, the team analysed fragrances in a number of scenarios to investigate the extent to which chemical components could be transferred between surfaces and what circumstances might affect this transfer.

The research focused on a number of factors relevant to the use of fragrances as a potential form of trace evidence in forensic enquiries, specifically the method of transfer and the time between application of the fragrance and contact with another surface. Experiments involved contact between swatches of fragranced and fragrance-free fabrics, examining transfer of compounds when the fabrics were in contact with no friction, and forcefully rubbed together over periods of time ranging from 1 minute to 60 minutes. After controlled contact, swabs were collected from the fabrics and subjected to GC-MS analysis. Unsurprisingly, extended contact time led to an increase in transferred components. This may have the potential to indicate how long a victim and offender were in physical contact, whether it be fleetingly or for a prolonged period of time, the latter being more likely in the case of an assault.

This research also investigated the effects of time passed between application of a fragrance product and contact between two surfaces on the transfer and persistence of VOCs. Contact between a fragranced piece of fabric and a fragrance-free swatch was investigated at a number of time points ranging from contact occurring 5 minutes after fragrance use and to 7 days after use. As was expected, the number of chemical compounds transferred between the fabric swatches decreased with time, with larger-sized, less volatile molecules persisting for longer. When only 5 minutes had passed before contact occurred, an average of 24 volatile components were transferred from the perfumed fabric. However after 6 hours only 12 components were detected, and this decreased to only 6 components after 7 days. Although this shows that certain transferred chemical compounds can persist for days, there is a discernible decrease in their presence which ultimately makes the sample less detectable and less unique, as a smaller mixture of chemicals are available for identification and comparison.

Although this is the first published work demonstrating the transfer of fragrance between garments in a forensic setting, the possibility of identifying perfumes based on their chemical composition for forensic purposes has been previously examined by experts at Staffordshire University in the UK. Led by PhD student Alison Davidson, the team has been compiling chemical profiles of popular perfumes and colognes with the hope of distinguishing between brands of difference fragrances and ultimately using this information to aid criminal investigations.

The ability to identify perfumes and establish physical contact between two individuals based on VOCs could be of particular use in the investigation of sexual assaults and other violent crimes in which the victim and offender were in close contact. For instance, the contact between a victim’s perfumed clothing and the clothing of the offender could cause the transfer of volatile organic compounds to the offender’s clothing (or vice versa). Later analysis of a suspect’s clothing may then result in the identification of chemical compounds originating from the victim’s perfume, indicating physical contact and thus potentially supporting an accusation.

Although the research conducted has supported the possibility of utilising transferred VOCs in perfume and possible affecting factors to aid legal investigations, it is vital to consider that a greater range of variables must be taken into account if such analyses were to be utilised in real life scenarios. The degree of activity by the victim and offender and the time passed between the offense and forensic analysis must be considered, as should how unique the mixture of chemical components detected really is. Furthermore, if the transfer of perfume between fabrics can occur so easily, there is a distinct possibility that such a transfer could occur in entirely innocent circumstances, highlighting the importance of such analysis only being utilised alongside alternative sources of evidence.

The concept of studying the chemical composition of perfumes and fragrances to aid legal investigations is very much in its infancy, but with further research this technique may have the potential to offer investigators an additional tool to sniff out suspects.



S. Gherghel, et al., Analysis of transferred fragrance and its forensic implications, Sci. Justice (2016), 10.1016/j.scijus.2016.08.004


Determining the Age of a Fingerprint: Is It Possible?

Determining the Age of a Fingerprint: Is It Possible?

During the scrutinising examination of a crime scene, it is entirely plausible for dozens or more fingerprints and fragments of fingerprints to be recovered. Not at all surprising considering how often we touch endless surfaces in our day-to-day lives. Consider how many people might grasp the handle of a shop door in an average day. If that shop were to become a crime scene, how could one possibly distinguish between prints that had originated on the day of the crime and those deposited weeks or months ago? Is it possible to estimate the age of a fingerprint?

Firstly, a quick review of just what a fingerprint is. We all know fingerprints are a series of unique arches, loops and whorls left behind when we touch a surface. But people may be slightly less sure of what these deposits are actually composed of.

Although the composition of a fingerprint is somewhat complex, 95-99% of the deposit is simply water, which will typically readily evaporate. The remaining 1-5% is an intricate mixture of organic and inorganic compounds ranging from amino acids and fatty acids to trace metals. Chloride, potassium, sodium, calcium, hydrocarbons, sterols – the list goes on. A vast concoction of chemicals emitted through our skin and deposited whenever our fingertips touch a surface.

But what we didn’t know until recently, is that these deposited chemicals gradually move with time, and that this movement can be used to determine how long a fingerprint has been on a particular surface. Researchers from the National Institute of Standards and Technology recently stumbled upon this very fact (Muramoto & Sisco, 2015).

Fingerprint when freshly deposited (left) and after 72 hours (right). Credit: Muramoto/NIST

Fingerprint when freshly deposited (left) and after 72 hours (right).
Credit: Muramoto/NIST

Like many discoveries, the research itself was something of an accident. The NIST researchers were initially using analytical techniques to detect trace amounts of illicit substances present in fingerprints. In the process of this investigation, they noticed the movement of chemicals within the fingerprint over time. Fingerprints are made up of ridges and valleys forming unique patterns, the characteristic features that allow investigators to distinguish between prints deposited by different people. These features are imprinted in various chemicals when an individual leaves a print behind. However over time the chemicals composing the fingerprint begin to migrate, moving from the defined ridges of the fingerprint into the valleys, essentially blurring the details of the print.

The researchers focused on particular biomolecules, namely fatty acids such as palmitic acid. By depositing fingerprints on sterile silicon wafers and storing the samples under strictly controlled conditions for a period of time, scientists were able to clearly observe the migration of molecules using a technique known as time-of-flight secondary ion mass spectrometry (TOF-SIMS). After a period of only 1 hour after fingerprint deposition, the friction ridge patterns of the fingerprint were clearly visible with the fatty acid molecules under observation residing along the ridges of the print. However within 24 hours the molecules had diffused into the valleys, blurring the patterns of the fingerprint.

The research thus far has simply been conducted to prove the concept of fingerprint component migration for ageing fingerprints, but further work could investigate time effects on a greater scale and even differences in the migration of different molecules. Although the method is advantageous in that it does not depend on chemical changes in fingerprints, which can be very dependent on individual circumstances, further work would be warranted to establish how environmental differences could affect the rate at which this molecular movement occurs, including temperature and humidity effects as well as those caused by the deposition surface.

As intriguing as this research is, this is not the first time scientists have tried to devise a method of ageing fingerprints using chemistry. In fact, researchers have been attempting to accurately age fingerprints for decades. Research has focussed on the changes in the chemical composition of fingerprints over time. For instance, concentrating on a particular compound, such as cholesterol, and establishing the rate at which the concentration of that compound changes over time (Weyermann et al, 2011). Unfortunately many such studies have found changes in the chemical composition of fingerprints to be too variable and unpredictable, particularly when taking into account the differences between donors and the effects of different conditions. Other studies have attempted to determine the age of a fingerprint based on how well powder adheres to the ridges (Wertheim, 2003), by changes in fluorescence wavelength over time (Duff & Menzel, 1978), and changes in electrostatic charge with time (Watson et al, 2010). A vast array of scenarios have been studied intently.

A method of establishing the age of a deposited fingerprint has been at the forefront of latent print research for a long time, and is likely to continue. Although fascinating advances have been made, scientists are a long way from catching criminals by the age of a fingerprint.


Cadd, S. Islam, M. Manson, P. Bleay, S. Fingerprint composition and aging: A literature review. Sci Justice. 2015(55) pp. 219-238.

Duff, J. Menzel, E. Laser assisted thin-layer chromatography and luminescence of fingerprints: an approach to fingerprint age determination. J. Forensic Sci. 1978(23), pp 129-134.

Muramoto, S. Sisco, E. Strategies for Potential Age Dating of Fingerprints through the Diffusion of Sebum Molecules on a Nonporous Surface Analysed Using Time-of-Flight Secondary Ion Mass Spectrometry. Anal Chem. 2015(87) pp. 8035-8038.

National Institute of Standards & Technology. Who, What, When: Determining the Age of Fingerprints. [online] Available:

Watson, P. Prance, R. J. Prance, H. Bearsmore-Rust, S. T. Imaging the time sequence of latent electrostatic fingerprints. Proc. SPIE ‘Optics and photonics for counterterrorism and crime fighting VI, Toulouse, 7838, 783803-1-6, ISBN 9780819483560 (2010).

Wertheim, K. Fingerprint age determination: is there any hope? J. Forensic Identif. 2003(53), pp 42-49.

Weyermann, C. Roux, C. Champod, C. Initial Results on the Composition of Fingerprints and its Evolution as a Function of Time by GC/MS Analysis. J. Forensic Sci. 2011(56), pp 102-108.

Forensic Case Files: Bruce Ivins and the Anthrax Attacks

Forensic Case Files: Bruce Ivins and the Anthrax Attacks

In September 2001, when the US was still reeling from the notorious 9/11 terrorist attacks, two US Senators and various media organisations were sent letters containing spores from the bacterium Bacillus anthracis, the cause of the disease Anthrax. The malicious mail resulted in the deaths of five people, the infection of 17 others and an investigation between the FBI and the US Postal Inspection Service that spanned almost 7 years.

Bacillus anthracis is a rod-like bacterium which can, upon entering the body, bring about the acute disease known as Anthrax. The endospores (spores) of the bacterium can lay dormant for years, but become activated and multiply after coming into contact with a host. Once contracted, the symptoms of the disease are dependent on the route by which the bacteria entered the body. However left untreated, the disease can ultimately kill the host.

The mailed anthrax spores were accompanied by misleading letters suggesting the attack was motivated by religion, though the prospect of terrorist groups, that were already at the forefront of the country’s mind, were soon discounted. It was soon concluded that a likely source of the anthrax, which was of the Ames strain, had been maintained by the US Army Medical Research Institute of Infectious Diseases (USAMRIID). Suspicion fell on Dr Bruce Ivins, who had been a researcher at the facility. Whilst in this position, Ivins had created and maintained this particular spore-batch, suspected to have been the batch used in the anthrax attack. With suspicions supported by an array of incriminating circumstantial evidence, investigators called upon a team of scientific experts to establish whether there was a link between Ivins’ own anthrax and the mailed anthrax.


Traditional forensic techniques were used in the examination of the spore powder and the letters and envelopes, including fingerprinting, and hair and fibre analysis, though this did not lead to any major breakthrough. A suite of analytical techniques was employed to ascertain various facts regarding the anthrax. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to identify the size, shape and quality of the anthrax spores, as well as provide a profile of the chemical elements within the spores. SEM and TEM are microscopy techniques which employ a focused beam of electrons which interacts with the atoms of the sample, allowing it to be visualised. They can be coupled with energy-dispersive X-ray (EDX) spectroscopy to provide elemental analysis. The physical and chemical characteristics of the spores allowed investigators to presume that the anthrax was not weapons-grade, but it was of a concentration and quality similar to that used in bio-defence research.

Inductively coupled plasma optical emission spectroscopy (ICP-OES), a technique based on the emission of photons from substances, was used to provide further details of the elemental composition of the spore powder. Furthermore, gas chromatography mass spectrometry (GC-MS) was employed to characterise the spores. Experts at the Center for Accelerator Mass Spectrometry (CAMS) were called upon to analyse the anthrax spores and establish their relative age. Accelerator mass spectrometry turns a sample, which has been converted into solid graphite by the analyst beforehand, into ions and accelerates these ions to high kinetic energies before conducting mass analysis to detect C14 (and potentially other isotopes depending on the work) to estimate the age of a sample. The analyses carried out on the samples in this instance determined that the mailed anthrax has been produced within 12 months of the attack, narrowing down the possible sources and suspects.

But perhaps the biggest breakthrough in the case came from a newly developed DNA fingerprinting technique which allowed investigators to conclude that the blend of anthrax spores created by Ivins in the lab was identical to that used in the attack, though how unique this “genetic signature” was has been somewhat debated. The US Justice Department later concluded that Ivins was solely responsible for the preparation and mailing of the deadly spores, claiming that he believed the scare would resurrect his anthrax vaccine program. Ivins later died from an overdose, deemed to be a suicide.

The case of Dr Ivins and the anthrax letters is a great example of how different analytical techniques can be drawn together to work in perfect harmony, utilising their individual powers to find out everything there is to know about a sample. In this case the array of techniques used allowed investigators to discover what the spores looked like and what they were composed of, their concentration and quality, and even how old they were. Armed with this information, investigators could home in on the source of the anthrax spores and the man behind the attack.


Centre for Infectious Disease Research and Policy. FBI says it easily replicated anthrax used in attacks.

US Department of Justice (2010). Amerithrax Investigative Summary. Darby, PA: DIANE Publishing.

Washington Post. FBI investigation of 2001 anthrax attacks concluded; U.S. releases details. [online] Available:

Caught Red-Handed: MALDI Mass Spectrometry & Bloodied Fingerprints

Caught Red-Handed: MALDI Mass Spectrometry & Bloodied Fingerprints

Most previous methods of establishing whether a fingermark at a crime scene contain blood are purely presumptive. The suspected fingermark, whether it be a print merely contaminated with traces of blood or an entire mark left in blood, will be subjected to tests which will aim to confirm or refute the presence of blood. However most existing presumptive tests suggest that it is a possibility the fingermark in question contains blood… but that it equally could be another similar substance that happens to produce a positive response with the test used. Thus is the limitation of any presumptive test – they can only give a possibility, not a definitive answer. Obviously not ideal during a forensic investigation.

Suspected bloodstains can be subjected to a wide range of tests to ascertain their composition. Blood may be visualised using alternative light sources, but this is a far cry from confirming its composition and in some cases (such as with the use of short-wave ultraviolet light) can even be destructive to DNA, thus obviously not ideal for the forensic examination of a blood sample. Spectroscopic techniques such as Raman spectroscopy have proved successful in potentially distinguishing blood from other biological fluids, though this has not been widely applied, particularly to blood in fingermarks. Chemical enhancement techniques have also been developed in the past, such as those that react with amino acids or haem-reactive compounds present to produce a colouring or fluorescence to enhance the blood. As successful as these methods may have been in the past, they are still only presumptive and cannot claim with any kind of near-certainty that any positive reaction produced is the result of blood and furthermore whether that blood is of human origin.

As a result of this, more confirmatory tests are needed.

More affirmative procedures do exist and are currently being developed. A particularly interesting method of detecting blood in fingermarks is using a technique known as MALDI MS. That is, Matrix-Assisted Laser Desorption Ionisation Mass Spectrometry. This relatively new analytical technique (relative to the history of mass spectrometry anyway) is most commonly applied to determining the mass of peptides, proteins and polymers, so is ideal for focusing on certain components of blood.

For those unfamiliar with mass spectrometry, in its simplest form it is a technique which is used to determine the identity of sample components based on their mass-to-charge ratio and, in some cases, how the molecule fragments when ionized. MALDI is something of a variation of this technique. In this technique, the sample to be analysed is mixed with a particular matrix material and applied to a plate. A laser irradiates the sample and matrix, causing ablation and desorption, after which the sample is ionized and then accelerated and detected using mass spectrometry.

Researchers have applied MALDI MS to detecting the presence of blood by specifically focusing on the detection of haem and haemoglobin molecules based on their mass-to-charge ratios. These molecules are vital components of blood, with haemoglobin being the protein responsible for oxygen transportation and haem being a compound embedded into haemoglobin which provides the iron essential for oxygen binding. By subjecting known and suspected blood stains and bloodied fingermarks to this technique, haemoglobin chains could be detected even in traces of blood invisible to the naked eye. Initial research into this technique studied human, equine and bovine haemoglobin, establishing that it is possible to determine whether or not haemoglobin was from a human source using mass spectrometry at a high mass range. Both fresh and aged blood samples could be successfully analysed, making the application potentially beneficial to samples from various points in time. Furthermore, the technique has proven to be compatible with other methods often used by investigators when attempting to enhance fingermarks at incident scenes, meaning the new method is not likely to interfere with existing procedures.

A typical haemoglobin molecule.

A typical haemoglobin molecule.

This fascinating application of matrix-assisted laser desorption ionisation mass spectrometry offers a whole new world of possibilities in blood detection in forensic science. Although at present such instrumentation is far from being the norm in the forensic scientist’s arsenal, the applications of advanced mass spectrometry techniques to answering some of the simpler yet vital questions during a criminal investigation make for a captivating read.


Bradshaw, R et al. Direct detection of bloos in fingermarks by MALDI MS profiling and imaging. Science and Justice. 45 (2014), pp. 110-117.

King’s College London. An Introduction to Mass Spectrometry Based Proteomic. [online][Accessed 16 Feb 2015] Available: