Keeping the Skies Safe with Analytical Chemistry

Ever since events such as 9/11, the Lockerbie bombing and the (fortunately) failed shoe bomber, the stringency of airport security has been ever increasing. Anyone who has passed through an airport has no doubt witnessed the occasional swabbing of luggage or electronic items. The staff will take a quick swab of the item, stick it into a mysterious machine and usually send the passenger on their way with little explanation of what has just occurred.

But what exactly are they testing for in this scenario, and just what is the instrument they’re using?

As one might expect, the biggest target of this security step is explosive substances as a counter-terrorism measure, in addition to illicit narcotics in an attempt to crack down on drug trafficking. In an airport setting, the analytical testing technique of choice is ion mobility spectrometry.

Ion mobility spectrometry (IMS) is an analytical technique used to identify chemical compounds based on the differences in the movement of ions under an electric field. The concept for the technique was established in the early twentieth century, however it was not until the 1970s that the instrumentation was actually properly developed. There are currently tens of thousands of IMS devices deployed around the world. Not only are they utilised in airports for drug and explosives screening, but also by the military for the detection of chemical warfare agents and in industrial settings to monitor air quality. The range of applications is potentially vast, but the principles of operation are the same.

As you may have witnessed, a small swab is rubbed over the surface to be tested, typically a piece of luggage or an electronic device such as a laptop, before being inserted into the ion mobility spectrometer. As the sample needs to be introduced in its gaseous form, the swab may be subjected to heating in order to thermally desorb analytes from the swab and allow them to be transported into the instrument for analysis. In order to manipulate the analytes entering the instrument, they must first be converted into ions, their charged form. Ionisation is typically achieved using a radioactive source, such as 63Ni (nickel-63) or 241Am (Americium-241), which first form reactant ion species from the carrier gas (usually air), which then leads to the ionisation of the sample material. These newly-formed ions will then enter a region under an electric field and drift towards a series of electrodes. The ions will pass through the drift region at different speeds depending on the shape and size of the ion clusters and strike the electrodes, the signals being amplified and detected. Depending on the instrument and needs of the analysis, either positive or negative ions will be produced (in some cases both simultaneously).

ims

IMS schematic. Source: Smiths Detection (www.smithsdetection.com)

The IMS utilised in airports will typically hold a database of known explosive and narcotic substances against which to compare samples. There will be a certain threshold, typically based on peak intensity, that must be reached before a positive identification will be indicated, and if there is a “match”, the operator will be alerted to a potential identification.

In comparison to other analytical tools available, ion mobility spectrometers are far from being the best. For instance mass spectrometry, an alternative technique for the analysis and identification of chemical compounds, can offer greater sensitivity, higher resolution, improved accuracy and better identification. So why use IMS? It essentially comes down to cost and ease of use. The simple design and ability to operate at atmospheric pressure means the instruments can be fairly small in size, some even being hand-held and so rendering them completely portable. They have low power consumption, so can simply be powered by a few AA batteries. The ease of use of the IMS means anyone can be trained to use the instrument, thus technical or scientific expertise is not required.

But what is perhaps most important for use in an airport setting with potentially thousands of passengers each hour, is the ability to conduct analyses quickly, and this is something that the IMS can offer. Many commercial ion mobility-based instruments can provide results in a matter of seconds. For instance, the IONSCAN by Barringer (now owned by Smiths Detection) boasts the ability to detect over 40 explosives and narcotics in just 8 seconds.

In a security setting there are three primary types of IMS that may be encountered. The smallest of the devices are handheld and sample by drawing in analytes present in the atmosphere. These may be used to analyse potential hazards relating to unattended baggage, for example. The second type, which is perhaps the most commonly encountered IMS in airports, is a benchtop instrument which requires introduction of the sample via some type of swab. And finally, some airport security units may utilise a larger, human-sized IMS portal. This setup uses airflow to dislodge particles of explosives or drugs from clothing or the passenger’s body and analyse them.

Unsurprisingly, the instruments are not infallible, and false positive or negative results are a possibility. Some ions will have the same drift time so may be indistinguishable from known explosives or drugs, triggering an alarm. In actual fact this response may simply have been caused by a cosmetic or pharmaceutical product that happens to produce a response similar to a known narcotic. On the contrary, dirt, oil and other contaminants may mask the presence of substances of interest, thus causing no alert despite the presence of a drug or explosive.

Furthermore, the IMS is somewhat limited in that it can only identify the presence of a compound contained within its database. So whereas it may be able to detect common explosives such as RDX, TNT and PETN, and frequently encountered narcotics such as cocaine, heroin and cannabis, it would not necessarily alert to the presence of an unknown compound (unless it was very similar in chemical structure to something in the database).

Fortunately research in the field of analytical chemistry is constantly ongoing, aiming to improve instrumentation and analytical techniques to resolve these issues and ultimately produce more reliable and robust security measures.

 

References

G. Ewing et al. A critical review of ion mobility spectrometry for the detection of explosive and explosive related compounds. Talanta. 54 (2001) 515-529.

Homeland Security Science & Technology. IMS-Based Trace Explosives Detectors for First Responders. [online] Available: https://www.dhs.gov/sites/default/files/publications/IMSTraceExploDetect-SUM_0506-508.pdf

Smiths Detection. Ion Mobility Spectrometry (IMS). [online] Available: https://www.smithsdetection.com/index.php?option=com_k2&view=item&layout=item&id=40&Itemid=638

Interview with Forensic Geophysicist Dr Jamie Pringle

IMG_1916

What is your current job role and what does this involve?

I am currently a Senior Lecturer in Geosciences at Keele University in the Midlands. My time is divided between teaching undergraduate and postgraduate students, supervising MSc and PhD students, and doing research and forensic casework. I teach on a wide range of Degree Programmes, including Forensic Science, Environmental Science, Geoscience/Geology,and Geography programmes, as well as M.Geoscience undergraduate Masters and the MSc in Geoscience Research. My PhD students are, however, mostly focused on forensic geophysics projects, for example, characterisation of mass burial sites, or looking at optimum detection methods to detect clandestine graves of murder victims. These student researchers do most of the hard work! Part of our role is also to engage with the public and communicate our research to lay people, including school children, interested adults and other scientists. For example, we run a bi-annual CSI event in Stoke-on-Trent, this year focusing on a HLF-funded Science behind WW1 event.

How did you come to be involved in forensic geophysics and what initially attracted you to this field of work?

I have come from a geoscience background, and when I was studying for a PhD, I became really interested in how geophysics can help the detection of buried objects, sometimes up to 10 m below the ground! This led onto various roles to do this, and, when at Keele University, I became involved in a cold case search by North Wales Police which piqued my interest and I have been hooked on forensic geophysics ever since!

Can you tell us about the research you are currently involved in at Keele University?

Ok so a lot of unsolved murder cases include the search for clandestine graves of murder victims; without the body, it is, generally, very difficult to obtain a murder conviction of a suspect. Detection rates of victims of unsolved murders over significant periods of time, say of 1+ years, are generally poor. Therefore collaborative researchers are undertaking controlled experiments, in order to see what methods may work best to find a body which has been missing for a particular length of time, in specific soil and ground conditions. These controlled experiments use pig cadavers as human analogues, due to their similarity in body/organ sizes, tissue:fat ratios, skin/hair type, etc. These can be for significant periods of time monitoring them, for example, I have been monitoring some for 9 years of burial so far. 6 years of multi-technique geophysical survey results can be viewed here. Interestingly GPR, which everyone uses, may not be the best geophysical technique in certain soil types, electrical resistivity may be better in clay-rich soils for example. An unexpected result has been the ability for the decompositional fluids of victims to be detected, and even allow a Post-Mortem Interval to be determined, based on its conductivity.

We have also been looking at geophysical survey results from graveyard burials in different graveyards and cemeteries, in order to push back the geophysical responses of older burials and even been involved in looking for Medieval mass burials of the so-called Black Death Plague in Central London! We have, with colleagues, even been looking at indoor areas to identify forensic objects of interest and the use of drones for location purposes.

Further afield, I have also been assisting colleagues in Spain look for mass burials of victims from the 1930s Spanish Civil War and sadly more modern victims in Colombia using near-surface geophysical methods.

IMG_1914

Aside from research, have you had any involvement in police casework, and if so what does this typically involve?

As mentioned, in the UK this has generally been less on active search cases for the missing (which are, most commonly, solved by conventional Police investigations), and more on unsolved murders over longer periods of time (so-called cold cases). This will involve reviewing the case and any previous information/search data, then visiting potential search sites, collecting trial geophysical data and confirming the local soil types, before conducting full geophysical surveys. If there are any anomalous results in the resulting geophysical datasets, then the Police Service search teams are contacted and intrusive investigations may then commence on targeted anomalies. The North Wales paper is a good example of this. As there are less time restrictions, we can also conduct control grave studies, by burying a ‘pretend’ victim in a particular depositional environment, to see what method may work best to find them. We did this to look for one of the so-called ‘IRA Disappeared’ who was buried in a beach, so we buried a mannikin in a beach to see what would work to find ‘her’, which was successful.

Do you have any words of advice for students wishing to pursue a career in your field of work?

Many of our students (undergraduate and postgraduate) study for a more general Degree (e.g. Geoscience) which can give them generic skills that they can use in a whole host of applied employment, for example in the geotechnical site investigation world, environmental contaminated land issues and characterization, general exploration, mining, etc., so that a forensic geophysical project can still lead to employment, even if it is not in a forensic geophysical capacity. A project geophysicist role in a geophysical company will sometimes be involved in both active and cold cases, and even for the search for unmarked burials in cemeteries in graveyards, so it can be a vary varied job role, it was for me!

Is there anything else you would like to add?

If you like a varied role, are inquisitive and like problem-solving tasks, but are still observant and rigorous, then this area may well be for you! Why not get in touch?!

Read more about forensic geophysics.

Forensic Investigation Conference: Search and Identification

Conference: Forensic Investigation Conference: Search and Identification

When: 13-14th May 2017

Where: Glyndwr University Wrexham

“Wrexham Glyndwr University and UK-K9 are jointly organising the first Forensic Investigation Conference to be held at the University. The two day conference will include a number of speakers who all specialise in different aspects of Forensic Investigation with special focuses on Search or Identification. As well as covering aspects on fire, explosives and drugs investigation there will be strong focus on the use of cadaver dogs in both land and water searches. A number of case studies will be presented covering human identification, decomposition and how forensic investigation can be enhanced by future research and collaboration. Alongside the presentations there will be a student poster conference displaying current research in forensic science, and the programme will also include search demonstrations with the dogs.”

The conference will host a number of fantastic speakers, including researchers in forensic taphonomy and anthropology, search and recovery experts, detection dog trainers and more. Students are invited to take part in a poster presentation for a chance to share and discuss their research.

For further information and to sign up to the event, visit: www.wgu.ac.uk/ForensicConference

 

VX and Other Deadly Nerve Agents

It has now been confirmed that Kim Jong-nam, the half-brother of North Korean Leader Kim Jong-un, may have been assassinated using a highly toxic nerve agent known as VX. The attack occurred last week (13th February) in Kuala Lumpur airport, suspected to have been committed by two women who reportedly sprayed the chemical into his face before fleeing the scene.

VX, or S-[2-(Diisopropylamino)ethyl] methylphosphonothioate, is a nerve agent initially developed at the Porton Down Chemical Weapons Research Centre in Wiltshire, UK in 1952. Having originally been the focus of research elsewhere into the development of new organophosphate compounds as pesticides, the British military soon established an interest in the compound and continued its development.

vx-wiki

S-[2-(diisopropylamino)ethyl] methylphosphonothioate) or VX

Typically encountered in liquid form, this clear or sometimes amber-coloured, oily substance is notoriously difficult to detect, lacking in both taste and odour. Its toxicity makes it one of the deadliest chemical warfare agents, requiring as little as 10mg adsorbed through the skin to be fatal. Its deadliness is only further increased by the persistence of the agent, making it difficult to decontaminate people and areas tainted with the chemical.

Mechanism

The mechanism of action of VX is identical to many similar nerve agents. The compound can enter the body by a range of potential routes, including ingestion, inhalation or skin contact. Once inside the body, VX inhibits the function of acetylcholinesterase (AChE), an enzyme responsible for catalysing the breakdown of acetylcholine. Acetylcholine is released over a synapse following an electric nerve impulse, ultimately resulting in a muscle contraction. However when VX binds to the active site of acetylcholinesterase, it renders the enzyme inactive, thus preventing it from breaking down the acetylcholine. As the nervous system is flooded with excess acetylcholine,  repeated muscle contractions occur, eventually resulting in asphyxiation due to constant contraction of the diaphragm muscle.

The effects of VX will typically occur immediately after exposure, beginning with coughing, shortness of breath and a tightness in the chest. A headache and blurred vision soon follows, along with symptoms such as vomiting, diarrhoea and abdominal pains. Given a sufficient dose, seizures will then occur as the drug attacks the nervous system, eventually resulting in a coma and asphyxiation.

If administered promptly, there are antidotes for VX. Atropine, typically administered by injection, is an anti-nerve agent that blocks the acetylcholine receptors, alleviating the symptoms brought on by the nerve agent. However it is worth noting that compounds such as atropine are toxic in their own right and, although they may save the person’s life by alleviating the effects of the nerve agent, they will still have an adverse effect on the patient. In addition to this, pralidoxime (or 2-PAM), can be administered to reactivate the enzyme, thus reversing the effects of VX. 2-PAM is a safer compound to use than atropine, but its effects are much slower.

Other Nerve Agents

VX is just one of many known toxic nerve agents. Nerve agents can typically be classed as either G-series or V-series. G-series agents were first synthesised by German scientists during World War II, and include tabun (GA), sarin (GB), soman (GD), and cyclosarin (GF). The first compound to be discovered, tabun, was accidentally synthesised by Dr Gebhardt Schraeder, who was investigating the development of organophosphate-based pesticides. The German army soon realised the potential use of such compounds, and went on to fund the development of other nerve agents such as sarin. The G-series chemicals are all clear, colourless liquids at room temperature, but are largely utilised as gases due to their high volatility.

The V-series nerve agents, which include VX, VE, VG, VM and VR, were developed a few years later, initially in the UK but some later in Russia. Unlike the G-series compounds, V-agents are very persistent and are not easily washed away or degraded, meaning they can remain on surfaces for long periods of time.

Fortunately the V-series nerve agents have generally not been exploited outside of military research, and the death of Kim Jong-nam may well be the first known use of the toxic agent in an assassination. However the G-series have received a great deal of malicious use and attention over the years, ranging from the Tokyo sarin subway attack in 1995 to its recent use in the Syrian civil war

VX, along with numerous other toxic nerve agents, were banned under the Chemical Weapons Convention of 1993, rendering the manufacture, possession and use of such substances illegal.

 

References

BBC News. VX nerve agent: The chemical that may have killed Kim Jong-nam. [online] Available: http://www.bbc.co.uk/news/world-asia-39073558

University of Bristol Chemistry on the Screen. VX Nerve Gas. [online] Available: http://www.chm.bris.ac.uk/webprojects2006/Macgee/Web%20Project/nerve_gas.htm

 

 

 

 

 

Interview with Forensic Archaeologist & Researcher Amy Rattenbury

img_0217

What is your current job role and what does this involve?

By training I’m a Forensic Archaeologist but currently work as a lecturer at Wrexham Glyndwr University teaching on the BSc (Hons) in Forensic Science. My day to day job is teaching student groups across all three years of the programme in a range of subjects such as Crime Scene Investigation, Anatomy & Pathology and the Forensic Investigation of Mass Fatalities. As well as delivering the theory I set up a lot of the practical work that the students do such as fingerprinting workshops, organ dissections and simulated crime scenes that we mock up in our Crime Scene House. I also supervise a number of student research projects mainly in the area of Taphonomy which we conduct on our ‘Body Farm’

What initially attracted you to this field of work?

I had always been interested in science and particularly forensic science and initially took a degree in Forensic Biology at Staffordshire. I always imagined that I would go on to work in a laboratory or doing fingerprint comparisons until I took a module in ‘Identification of Human Remains’. This really sparked my interest in human osteology and made me pursue a MSc in Forensic Archaeology and Crime Scene Investigation at Bradford University where I found my very niche area in search and recovery of human remains. I started teaching anatomy alongside completing my MSc and found a real love for being in the classroom. It gives me an ideal role in being able to share what I’ve learnt so far whilst still being able to pursue my own research and industry related work. Looking back now I can’t imagine not being a teacher. There’s something about introducing students to concepts they had never considered before that really exciting. And sometimes they come back to you later on in their academic careers and actually end up teaching you something; that’s a really rewarding feeling.

prof

Can you tell us about the research you are currently involved in at Wrexham Glyndwr University?

We are really lucky here at Glyndwr to have Wales’ first and only Taphonomic Research Facility which is licensed by DEFRA. This ‘Body Farm’ allows us to conduct a number of research projects looking at decomposition which could necessarily be hosted by other universities without a dedicated, rural area in which to conduct their research. This coupled with a high calibre research lab in our Chemistry Department has really allowed both myself and students to expand research ideas. Current student projects which are out on the body farm include:

  • The effect of clandestine burial decomposition on soil chemistry and vegetation
  • How tattoo identification is effect by post mortem changes
  • A comparison of decomposition rates in fresh and stagnant water

I am also hoping to set up my own research once the temperature improves slightly and this will be looking at how oxygen deprivation (i.e. vacuum packing) affects taphonomic changes. This is a research project based on a pilot study I supervised, conducted last year by Shareei Singer at the University Centre Southend, and we hope to expand this further by looking at more samples, over a longer time frame whilst also improving the analysis methods used.

What are some of the biggest challenges in your field of work?

Teaching is a challenging role in the first place, but even more so at University level where there is an increased need to challenge students academically, and this can be particularly difficult field to get in to early in a professional career. I’m only 25 so it’s been very much a case of putting myself out there for any and every opportunity to prove myself and gain any experience I can. You really have to show not just your ability as an academic but also a drive and passion for the subject and the students. It is a highly competitive area, not only in terms of securing jobs in the first place, but then going on to conduct and publish research whilst still maintaining high quality, engaging session, for students every week. For me in particular, I find the sheer volume of books and journals I have to read, to ensure that my delivery keeps up with the speed that the area is progressing, a little daunting. But when it’s a subject that I’m passionate about, and books I would likely read anyway, it does make it easier!

banner-2

Aside from research, are you often involved in police casework or consultancy work, and what does this typically involve?

I’m not currently involved in any active police work but I did only move up to North Wales around 6 months ago. It is something that I am very keen to start and hope to build up connections in the area to so this. I do some other consultancy work in different areas of forensic search. I work quite closely with UK-K9 who are a search dog training team. They specialise in training dogs to search for a variety of forensic evidence including human remains, explosives and drugs. We are currently working to improve the use of the human remains detection dogs on water and particularly in salt water setting such as costal searches. They are also involved in a lot of cold case reviews and large scale searches which I can offer an archaeological perspective on. I have also recently taken up a consultancy position with Kenyon International Emergency Services who deal with crisis incidents world-wide. I am currently awaiting deployment but once I am called in the role could be anything from collecting evidence at aeroplane crash sites to helping with disaster victim identification during natural disaster.

Do you have any words of advice for students wishing to pursue a career in your field of work?

For students wanting to go in to the forensic science generally just make sure you have it clear in your head before you start that it isn’t going to be how you see things portrayed in the media, I wouldn’t want you to be disappointed or put off once you start the course. I would say trying to get any sort of work experience is going to be crucial. Experience is essential nowadays but still almost impossible to get in crime related areas so think outside of the box a little bit. There are lots of labs you could do placements in that, although aren’t forensic can help you to learn and demonstrate key skills. I worked in a drinking water testing lab and in a haematology lab for a little while, both of which helped learn more about preventing cross contamination. But there are lots of other areas you can volunteer in such as becoming a PCSO, the Appropriate Adult services or any other charity that deals with victims of crime or offenders.

For students wanting to become educators I would say persevere. Remember what made you so passionate about that subject in the first place and share this with you students. It’s amazing how much more progress you make once you’ve learnt to foster this positive learning and collaborative environment. The planning and the marking will get easier, I promise!

 

Follow Amy on Twitter at @amy_rattenbury

Forensics at Glyndŵr can be followed on Twitter or Facebook.

Interview with President of IsoForensics Inc., Lesley Chesson

southern-utahDifferent forms of elements–called isotopes–are found everywhere in the environment. These isotopes are incorporated into materials in varying ratios and the abundances of different isotopes thus serve as a record of the material’s formation. Analysis of a material for its distinct isotope signature can subsequently be used to reveal its history. Investigators have applied stable isotope analysis to a variety of materials of forensic interest including drugs, explosives, money, food, ivory, and human remains. For example, the isotopes in human hair protein can reveal the age of an individual, what s/he ate, and even how often (and where) s/he travelled.

What is your professional background and how did you come to be involved in IsoForensics?

I have a master’s degree in biology, with a lot of microbiology and chemistry experience. I entered the world of isotope forensics when I was hired to raise Bacillus subtilis (a cousin of the anthrax bacterium) under a variety of conditions – in liquid media, on agar plates, with different nutrients, etc. Because organisms record information about the environment in the isotopes of their tissues, the goal of this project was to develop models that allowed investigators to predict the growth conditions of a dangerous bacterium–such as anthrax–from its isotopic characteristics.

From its start in academia, IsoForensics developed into a private analytical services and research firm that explored novel forensic applications of isotope analysis. I enjoyed the challenges offered by that exploration. Since my first work on the B. subtilis project, I’ve been involved in other projects on human remains, foods and beverages, illicit drugs, and explosives.

Tell us about the work IsoForensics is involved in and what kind of clients do you typically work with?

Currently, IsoForensics provides a lot of human remains testing in unidentified decedent cases. The goal is to use the isotope records contained in hair, nails, bone, and teeth to reconstruct the travel history of individuals and provide new evidence on their origins: Were they local to the area of discovery? Had they traveled prior to death? Where might they have traveled? We work with a variety of law enforcement groups in this casework.

In addition to service work, we conduct basic and applied research through funded grants and contracts. One recent project has started to investigate the origins and ages of seized elephant ivory to understand the structure of illegal trade networks in Africa and Asia.

What are some of the most common sample types you are asked to analyse, and does anything pose a particular challenge?

In any given month, we can analyze a variety of materials – human and wildlife remains, illicit drugs, explosives, etc. One of the most challenging measurements we make is for strontium isotope ratios. There is so little strontium contained in organic materials that prep work takes place in clean lab settings. The preparation of materials for radiocarbon dating is also challenging since we must be extremely careful about contamination of “old” materials with “modern” carbon. However, these challenges are worthwhile since strontium isotopes can provide potentially useful geolocation data about materials while radiocarbon dating provides quantitative information on the “age” of materials.

Are there any areas of isotopic analysis that could benefit from further research and development?

Yes. Isotope forensics benefits from better and better models/methods for interpreting data. It’s one thing to compare isotope measurement results from sample to sample or from sample to a reference databank, but it’s another thing altogether to understand the process(es) driving isotopic variation in materials. For example, are the results we observe due to differences in TNT manufacturing process? Or coca plant physiology? Or elephant diet?

Isotope analytical techniques also change over time as better instrumentation is developed. Understanding the impact of different analysis techniques on measured isotope ratios is extremely important when comparisons are made – especially in legal settings. A major focus of the field is the standardization of practices and protocols, to generate comparable results over time and space (e.g., from lab to lab).

How has the need for isotope analysis in forensic investigations changed over the years, if at all?

The forensic application of isotope analysis has been increasing the past 10-20 years. This is partly due to changes in analytical techniques, which have made isotope ratio measurements faster and cheaper. In addition, those who could benefit most from forensic isotope data–law enforcement, regulators, etc.–have become more aware of the technique and it potential usefulness in various types of investigations. We as forensic scientists and isotope analysts can do even more to spread awareness about the technique and its many applications.

Finally, do you have any advice for students hoping to pursue a career in this field of work?

Isotope analysis is one (extremely useful!) tool in a forensic scientist’s toolbox. Having a background and training in other areas–such as anthropology, analytical chemistry, biology, biochemistry, geology, law, or statistics–can be very important when applying isotope analysis techniques and interpreting the resultant data. The field of isotope forensics is relatively small compared to some other forensic disciplines, so be sure to read papers, attend meetings, and network with scientists working in the field.

Visit the Isoforensics Inc. website for more information.

Sex Determination with Raman Spectroscopy

Sex Determination with Raman Spectroscopy

The ability to quickly identify a victim or suspect during a criminal investigation is crucial, and the use of fingerprinting and DNA profiling often proves invaluable in this. However, a fingerprint or DNA profile can only be associated with an individual if there is an alternative profile or database match for comparison.

But what can investigators do when comparison profiles are not available, rendering biological fluids found at crime scenes somewhat useless?

The capability of instantly establishing alternative information relating to a suspect – such as sex, age or a phenotypic characteristic – based on the analysis of the evidence could be a substantial benefit to an investigation.

In recent years, the use of both well-established and novel analytical techniques to ascertain information relating to a suspect or victim from bodily fluids has been the focus of a great deal of research. With an increasing number of analytical instruments becoming field portable, the possibility of in situ analysis at crime scenes and instant suspect information is quickly becoming a reality.

Raman Spectroscopy and Sex Determination

Most recently, researchers at the University of Albany (Muro et al, 2016) have highlighted the possibility of using portable Raman Spectroscopy to determine the sex of an individual based only on their saliva in real-time.

The study utilised a total of 48 saliva samples from both male and female donors of multiple ethnicities, depositing the samples onto aluminium foil and drying overnight. Samples were then subjected to Raman analysis and the chemical signatures scrutinised to determine whether or not the saliva of male donors differed from that of female donors.

Raman Spectroscopy is a non-destructive analytical technique used for analyte identification based on molecular vibrations. As a basic explanation, monochromatic light is initially directed towards the sample, some of this light simply passing through the sample and some of it being scattered. A small amount of this scattered light experiences an energy shift due to interactions between the sample and the incident light. These energy shifts are detected and transformed into a visual representation. The resulting Raman spectrum typically plots frequency vs intensity of the energy shifted light. The positions of different bands on this spectrum relate to the molecular vibrations within the sample which, if interpreted correctly, can allow for the identification of analytes.

Raman spectra are somewhat characteristic of the chemical composition of the sample. In the case of the saliva analysed in this study, the features of the spectra were largely caused by amino acids and proteins. When comparing the respective spectra from male and female donors, by eye they appear remarkably similar. However using multivariate data analysis, a statistical technique used to analyse data with multiple variables, the researchers were able to distinguish between the saliva of male donors and that of female donors, reporting the ability to ascertain the sex of the donor with an accuracy of an impressive 94%.

malefemaleramanspectra

Comparison of male and female saliva Raman spectra (Muro et al, 2016)

Although only a proof-of-concept paper, the research demonstrates the possibility of using portable Raman spectroscopy as a method of elucidating donor information, in this case sex, through the analysis of a bodily fluid. The researchers suggest further work will be conducted to include other bodily fluids and donor characteristics.

At this point, the usefulness of the research is limited. Although instantly establishing the sex of the donor of a bodily fluid can aid investigators in developing a suspect or victim profile more efficiently, the pool of potential donors is still huge. The total of 48 saliva donors used in this study is of course not a sufficient representation of the population, thus a much larger sample set would be required to fully evaluate the technique, including non-laboratory setting experiments. Furthermore, there is a wide range of medical conditions and additional factors that can result in changes in the chemical composition of saliva and thus could influence the effectiveness of this technique. Whether or not certain diseases or external influences can hinder gender determination using this method would need to be investigated.

Previous Research

The idea of utilising analytical chemistry to ascertain donor information is not in itself novel, and other researchers have attempted to achieve the same goal through different means.

In 2015, scientists also based at the University of Albany (Huynh et al, 2015) developed a biocatalytic assay approach to the analysis of amino acids in fingerprints to determine the sex of the donor. The study boasted an accuracy of 99%, with the sex differences believed to be due to the higher concentration of amino acids in fingerprints deposited by females.

Research by Takeda et al in 2009 used Nuclear Magnetic Resonance (NMR) Spectroscopy to determine differences between the urine and saliva samples of different donors based on the detection and comparison of different metabolites. Certain compounds, including acetate, formate, glycine and pyruvate, were found in higher concentrations in male samples, allowing for the differentiation between male and female bodily fluids.

The focus of such research is not limited to sex differentiation, for instance some research has even focused on establishing whether a blood sample belongs to a smoker or non-smoker. Utilising gas chromatography mass spectrometry with a solid phase microextraction pre-concentration step, Mochalski et al (2013) were able to effectively distinguish between the blood and breath of smokers and non-smokers due to the ten-fold increase in levels of benzene and toluene, a conclusion which has been repeated by other researchers.

Looking at just this small handful of studies, it becomes evident that certain analytical techniques have the potential power to ascertain a range of information about the donor of a bodily fluid. However all of these immunoassay and mass spectrometry techniques are typically time-consuming, requiring the transportation of a sample to a laboratory, sometimes extensive sample preparation, followed by a form of analysis that will often destroy the sample. This is evidentially not ideal during a time-sensitive criminal investigation in which sample amount may be limited.

To an extent, the research utilising Raman spectroscopy to determine sex from saliva does alleviate some of these problems. The portability of Raman devices allows for in situ analysis, removing the need for expensive and time-consuming laboratory analysis. As Raman spectroscopy is based on the interaction between the sample analyte and light, it is a non-destructive technique, allowing the sample to be preserved for storage and further analyses is required.

Although these techniques do not hold the power of DNA in almost irrefutably identifying the suspect, they may at least aid investigators in narrowing down their pool of suspects and steering the investigation in the right direction. No doubt further advances in analytical chemistry will allow for more accurate and robust techniques in the future.

 

References

Huynh, C et al. Forensic identification of gender from fingerprints. Anal. Chem. 87(2015), pp11531-11536.

Mochalski, P et al. Blood and breath levels of selected volatile organic compounds in healthy volunteers. Analyst. 7(2013), pp2134-2145.

Muro, C. L et al. Sex determination based on Raman Spectroscopy of saliva traces for forensic purposes. Anal. Chem. 88(2016), pp12489-12493.

Takeda, I et al. Understanding the human salivary metabolome. NMR Biomed. 22(2009), pp577-584.